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INTRODUCTION

There are in existence many classes introduced in view of extending
the notion of Bessel potentials of LZ functions (c.f. [2]; classes P? dis-
cussed there were introduced earlier but the theory was not published in
extenso).

The most important appear to be the classes often denoted by L‘;
(Calderon [6]), W: (introduced by Gagliardo [11] and Slobodecki [14] as
the extension of classes W: introduced by Sobolev for integral values of a)
and ’75")&"’ (the special case of more general classes introduced by Besov
[51)

These classes are defined essentially as follows (for precise defini-

tions see §7 of this paper).

Li is the class of all Bessel potentials of LP functions, i.e. of all
functions u of the form u = Ga * f, fe Lp, where Ga is the Bessel kernel

of order a (c.f. §2). The norm in Lz is defined by Huﬂa,p = ”f"Lp .

W: , for @ > 0 is defined as the class of all functions which together
with all derivatives of order < a (in the sense of the theory of distributions)

are in Lp and have finite norm

a . D.u(x)-D u(y) < ¥ |
ISO b%l [S‘RnIDJUIde i S;n ‘gn} ]Jx-y]“'i]a]y Ip li:,y]n ] . :

l. We shall not consider here the classes introduced by Nikolskii [12] as
they are not so closely related to potentials of LP functions, The same

applies to the general classes of Besov.
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In the latter expression the double integrals are to be omitted for a in-

teger., (For a precise definition of the norm in W: see §3,) -

7 a.p' a > 0, is defined as the class of all functions of LP with the

A
finite norm Iula.p,k = (]]u“ip +‘S‘ "l—tﬁ;llzpltl ndt)l,p v k>a,

This expression does not give the standard norm in 73 ®P  However,

for all integers k > o the corresponding norms ]u]a p.k are equivalent,

In view of different aspects of the theory, each of these classes has
its advantages and disadvantages, From the point of view of simplicity of
properties the class f:)a,p seems to be the most advantageous; the class
LF; is the simplest from the point of view of definition and representations

of its elements., Class W: is in most cases in a kind of intermediate posi-

tion between the other two; for o not integer and all P; 1 £p £ o, W: co-

-

incides with 73%'P, whereas for o integer and 1 < p < o, it coincides with

Ll;. The only cases when Wg has a somewhat independent existence are

p=1or p=o and a integer. These are actually the cases when the in-

formation about W: is the least precise, For this reason, if we were in-
terested in studying these classes in the whole space R", there perhaps
wouldn't be much point in introducing .the classes Wg. This study, however,
is conceived as an introduction and help to the investigationA of the corres-
ponding spaces on domains of the space )2 (as was done in the case of
Bessel potentials in [3]). In this connection we immediately come across
the question of defining these classes intrinsically for a domain D C R",
For W: the answer is immediate, To defineA W:(. D) it suffices to replace
K* by D in all the integrals occurring in the definition of the norm. Such

definition is justified by an extension theorem asserting the existence of a
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simultaneous linear and bounded extension mapping from W:( D) to
L]

W:(R.n) for a rather general class of domains,

As concerns L}; there is no intrinsic definition of a corresponding

class in a domain D.

In the case of ’Ié P there is an intrinsic definition for a domain D
proposed by Besov in which the integration of the difference is taken only
over the points of D where the difference is defined, However, it is not
known, and probably not true that for a general domain D the different
norms defining ,;é)ar,p are equivalent. Even if one of them is chosen, the
presence of the higher difference occurring in the norm makes it very
unwieldy to use it in a domain. In the case of classes WY we know that
most of the results of the theory of Bessel potentials of L2 functions can bg
extended to W:(D). It is not known and seems difficult to extend these re-
sults to the proposed classes ,éa,p(D). This is the reason why in the

wr
present paper we are stressing the study of the classes Wp.

All the classes under consideration can be considered as completions
of the class Cgo with corresponding norms., The classes LE;, W:, 13 *P

are such completions relative to the class of sets of Lebesgue measure 0,

This approé.ch avoids some essential difficulties, but in some respects

it is rather inconvenient, especially if we want to speak about restric-
tions of these classes to hyperplanes or more general subsets of R",
Clearly this approach does not allow any insight into pointwise properties
of derivatives of functions of the classes under consideration,

Similarly as was done in the case of Bessel potentials of Lz functions
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we introduce the perfect functional completions of Cg’ with the norms
of LE, w‘; ) ';sa.p. To distinguish these perfect completions from the
imperfect completions we use the symbols P*P for the perfect comple-~
tion corresponding to LF; (in analogy to the symbol P? for Bessel poten-
tials- of L2 functions), i:’,a,p for the perfect completion corresponding to
w& ( in analogy to i:’,a for Bessel potentials intrinsically introduced on

|4
domains) and B¥P for the perfect completion corresponding to THYUP,

It is to be noted that for p = 2 all three classes coincide with P?,
and this is the only exponent for which a single class can be defined com-

v
bining all the advantages of P*'P, P*P and B¥P,

All three families of spaces considered here were extensively in-

vestigated by several authors, Besov [5] (see also [12]), Calderon [6],

Gagliardo [11], Slobodesky [14], Stein [7], [8], Taibleson [19] and others, L ana

many of the results presented in this paper were obtained by them. We
believe, that in addition to some new results which we obtain here, the
most significant contribution made is the introduction of the representa-
tion formulas for the study of the spaces under consideration. The method
appears to have possible applications in the general study of differential

problems.

The basic idea behind the use of representation formulas lies in the
fact that they represent a function as an integral transform (or a linear
combination of such) applied to expressions whose LP norms occur in the
definitions of the spaces under consideration, For éxa.mple. the represen-

tation formula (c.f. §5)

-z m gy d
W= 2 ,)L VG x-yIDjaly) dy

1. See [12].
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5.

expresses u in terms of all its derivatives of order < m -- the norm in

W;n is defined in terms of LP norms of these derivatives.

We give a general method for obtaining such representation formulas.
They are derived from identities written in terms of Fourier transforms,
where tﬁey appear as quite elementary; the translation of these leads to
identities in terms of the original functions, .usually in terms of some
special integral transformations. This kind of translation has a well deter-
mined meaning in terms of tempered distributions, but since we are interested
in applying the resulting formulas as bonna fide integral transformations, we
have to use a relatively simple theorem (§5) giving conditions under which
the formulas so obtained are valid as integral formulas. These considera-

tions in turn necessitate an analysis of the corresponding integral transfor-

mations in order to decide if these transformations are absolutely regular,

In §6 we give criteria for absolute regularity which were already
known for some time to be sufficient (but were not published). Quite recent-

ly E. Gagliardo proved them to be necessary also (in a forthcoming paper).

In the introductory chapter we recall some basic notions and results
of the theory of functional spaces and functional completion (§1), the de-
finition of the kernel Ga and some of its properties (§ 2). For functions
of Cgo‘ we introduce the standard and approximate norms of w‘; (§3) and

the norms ] of 75%P (§4) and investigate their properties; in

lar.p,k

particular we prove the equivalence of norms ] with varying k,

Ia.p,k
The second chapter deals With the imperfect completions. In §5 we de-
scribe the formal way of obtaining all our representation formulas (among

these the reproducing formulas an;i inversion formulas for Bessel poten-
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tials). '§6 is to be taken as a brief introduction to the general theory of
integral transformations which leads in particﬁar to the notions of semi-
regular, regular, and absolutely regular transformations and their basic
properties. In §7 we introducein a precise way the imperfect completion;
in 88 we prove the continuity of the standard norm of W: considered as

a function of a. In §9 we derive various auxiliary inequalities concerning
the kernel Gar , its derivatives and differences, whi;:h are needed in 8§10
where we consider several integral transformations occurring in our repre-
sentation formulas and analyze them from the point of view of p;-op_erties
described in 86. Almost all of these transformations turn out to be ab-
solutely regular which allows us to obtain in §11 all the equalities, isomor-
phisms and inclusions between the different classes. We show in particular
that there is a well-determined space BO.p of tempered distributions such
that 'éa'p = GOIBO’p for all a > 0. In most cases these results were
obtained by other authors by different methods; we were able to make some
of them more precise. In 812 our representation formulas are used' to re-
present the spaces W:, _éa,p as projections in suitably defined Lp-spacea
which allows us to prove in a simple way that W:. W:, and 73%P, ﬁa,p'

are conjugate in suitable pairings.

. v
Chapter III deals with the perfect completions P¥P, p®P and p*P,
In §13 we prove their existence, describe their exceptional classes and
show that in almost all cases the representation formulas introduced before

give perfect representations of functions in corresponding perfect completions.

It ie shown further that functions in perfect completions have pointwise de-

fined derivatives (for p =1 the results are somewhat weaker), It is also

shown that for every function in any of the imperfect completions we can

.t e
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very easily obtain a corresponding function in the perfect completion by
replacing it by the pointwise limit of its .regulariza.tions (corrected func-
tion) and taking as its exceptional set the sets of all points where the limit
does not exist or is infinite. (Here again the result is less precise for

v
Pa’l, a-integer.)

In the last section we prove theorems about restrictions of functions
of our classes to hyperplanes and extensions from hyperplanes to the whole
space. We take advantage of the fact that our representation formulas give
perfect representations of functions in our classes, and consequently the
pointwise restrictions are defined directly by these formulas. The results
of §10 provide an immediate verification that the restrictions so obtained
are in suitable classes. The extensions are obtained by again making a

suitable use of the representation formulas. ;
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CHAPTER I. Preliminaries.

81, Functional spaces and functional completion.

For the sake of completeness we shall summarize here some results
of the theory of functional spaces and functional completion relevant for this
paper (c.f. [1]).

Let o1 (exceptional class) be a ¢-additive and hereditary class of
subsets of a set & . A property of poir;ts of ¥ is said to hold except of

(exc., or ) if the set where it fails belongs to or .

A linear functional class relative to ot (rel. ) is a class F of

complex valued functions defined on & exc. O£ such that for every u,ve ¥
and for every complex number @, u+ve ¥ and aue F. If 0t =(0), i.e. O

contains only the empty set, "7 is called a proper functional class,

The space V of all equivalence classes of elements of a functional
class F exc. (& with the equivalence relation f ~ g &3> { = g exc. 07 is,
of course, a vector space. We shall consider only such functional classes

# thatif fe F and g = f exc, o/ then ge F (saturated classes).

A normed functional class ‘Z rel. & is a linear functional class

rel. 02 in which there is defined a norm uu" 2 0 with the properties:
1° l]uu = 0 if and only if u =0 exc.d, 2° uaul] = ]a] ]lu" ,

g Ju-vl+ v

If a class # is normed then the corresponding vector space V of

w
[
=
[
=
A

the equivalence classes of elements of 7 is a normed vector space. All
notions relevant in the theory of normed vector spaces (e.g. convergence, |

completeness, etc,) may be therefore transferred directly to the class F.



10,

A functional space rel. £ is a normed functional class rel. /L with

the following functional space property: Every sequence which converges

to 0_in the norm contains a subsequence convergent to 0 pointwise exc. sz,

A functional completion of a normed functional class ¥ rel. o¢ is

a normed functional class “F rel. ol such that (a) o Da; (b) if ue #

la 4

then ue ¥ and has equal norms in both classes; (c) F is dense in F (in

norm); (d) F is complete, There may be no functional completion for ¥

relative to a given exceptional class 0; Do . However, if a functional com-

pletion exists then it is unique.

A functional completion of a normed functional class F is perfect
if its exceptional class is contained inthe exceptional classes of all functional

completions of 7 . Perfect functional completion is unique if it exists,

The basic problems of the theory of the functional spaces relevant
for this paper are a) to determine when a functional class has a perfect
functional completion, b) to characterize the exceptional class for the per-

fect completion,

As concerns problem a), it is not known whether the existence of

some functional completion implies in general the existence of a perfecti func--

tional completion. In applications, however, the existence of a perfect func-
tional completion may be established by means of the following majoration
properties,

A normed functional class ¥ with the norm | | is said to have the

global majoration property if there is a constant M > 1 such that for every

function u € F there exists a function u' € 7 such that ]]u' ]I < M“uﬂ and
Re u'(x) > ]‘u(x)] exc.% . In particular, if M = 1, the class is said to have

the strong majoration property.
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Denote by % the class of sets B C % such that there exists a func- :
tion u € TF with the property (i) Iu(x)l‘ 2 1 for xe B exc.x. For Be s

we define 6(B) = inf"u” for all ue 7 satisfying the above property (i).

On oG—U (the class of all enumerable unions of sets from 5} we
define the capacity of order 1, CI(B) as follows: cl(B) = inf Z_,G(Bk) , the
infimum being extended to all sequences {Bk} of sets in & with BC U Bk'

We have then the following theorem.,

THEOREM 1.1. If the normed functional class 7 satisfies the

global majoration property and has some functional completion, then it has

a perfect functional completion relative to the exceptional class of all sets

B with cl(B) = 0,

It may happen inapplications that the global majoration propertydoes
not hold for the class 7 itself, but can be proved for anotheg class ’5‘1
relative to the same exceptional class JZ and such that it has exactly the
same functional completions as the class # . We use here the following

easily proved theorem.

THEOREM 1. 2. If #, ¥, ?0 C 71 , are two normed functional

classes rel. 07/ such that:

1° For every fe 9(0 , the norms of f in 10 and 7—1 coincide

2° For every fe 71 , there exists a sequence {fn} C ?—0 such that

lim ufn— f]] =0 and 1lim fn(x) = f(x) exc. JI.
n —» oo n-»o

Then ’}’-0 and 71 have the same functional completions.

The last theorem will be applied in practice by restricting the initial
functional class ¥ to a smaller class ’70 and then by enlarging ’51-0 toa v

larger class 71 . ’fl will have the global majoration property. It will also
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have the same functional completions as F even though it will not be in

any inclusion relation with % .,

We mention here a useful theorem which is valid also for more

general capacities than <

THEOREM 1.3, Let {fn} be a Cauchy sequence in the normed
00

functional class “F such that Zufnﬂ —fn“ < oo, then fpr every € > 0,
n=} )
there exists a set B€ 6.2;0 with cl(Be) < € such thaton & - Be the se-

quence {fn(x)} converges pointwise uniformly.

Let Z be a normed functional class rel. /Z and D be a subset of e,
D 401. Denote by JZ(D) the class of all the intersections of sets of 2. with
D. Then for every ue 7 the restriction u/D is defined exc, 07(D) and the
set of all such restrictions form a linear functional class “#(D) rel. 72(D).
With the norm defined by ]]u'ﬂD =inf {Ju]], up =u'} the class F(D) is
not in general a normed functional class however (c.f.[2]) if 7 is a func-
tional space rel, Jf then so is 7 (D); moreover, if 7 is complete, then:

“#(D) .is also complete.

The properties of functional spaces described above, with the excep-
tion of the strong majoration property, remain unchanged if the original norm
in a given functional space is replaced by an equivalent norm. This fact will

be useful in further considerations,

We shall consistently denote by 41 0 the class of sets of Lebesgue

measure 0,

g2, Notations and Bessel kernels.

The following notations will be used consistently, x,y,%,... will
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denote the points of the n-dimensional Euclidean space Rn, lx -y ] the
Euclidean distance of the points x,y, ]x] = |x=-0], &n,... points of the

dual space, (£,x) the inner product of the vectors £ and x, The symbol D

i
, 1 :
for i = {il, ""il} will denote the operator 'b':?i—_a_'BY; , ]1] =f, f*g
1'.. 1

A

will denote the convolution of f and g, f(£) the Fourier transform of f,
For a > 0 the Bessel kernel of order a, Ga(x-y) = Ga(].x-y]‘) is

defined by the formula (c.f.[2]):

a-n

. )

(2.1) Ga(lxl‘) = ’n-Fa-Zl n Kn-a(lx])lxl !
2 IZI‘(%) z

where Kv denotes the modified Bessel function of the third kind of order v.

The same formula could be also used for a < 0; the resulting function,
however, is not locally integrable around the origin and cannot serve to define
an integral convolution operator, In some considerations it will be convenient

to indicate by G&n) the Bessel kernel of order a on the space R"; thus

(n) _
Ga" =G, .

The following properties of the kernels Ga will be needed in the se~
quel (c, f.[2]).

The Fourier transform of Ga is given by the formula

n

"z
A 2
(2.2) G (&) = __(_ﬂ_m .
- Le|&]%
The kernel Ga is an analytic function of x except at x = 0; for x # 0,

Ga(x) is an entire function of a. The behavior of Ga is described by the fol-

lowing formulas (all representations being valid uniformly in a for a in any

fixed bounded interval),

For l",'—" 0:
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r57)
(2.3a) Ga(x) = DR ™ IXIa-n-O- 0(.lx]“—n) if « £n=~-1.,

For n-1 S asn we have

! (I
(2.30) %l = —5= [r(z"‘*") T ]* o
: 20 _2— I‘(-z-)si _zg -z -z
The last formula gives, in particul:r,
(2.3c) G, (x) = ——I—m—-——[ og L s o] .
_ I(3) x|
For a 2 n, We have
(zl=D |
(2.38) G fx) = — g [ g = ZZM = -] + 0(]x] % (r0g L)
20 _Z- £2°8 (_2—) 1"( M
if 0 ga-agl.
k-1 a-n
(-1 0(5= ~1)
(2.30)  Gylx) = { Z (G 4
; Z e Liso T
() :

k

( l ')a-n -2
a-ln [ - a-n Z¥a-n _](z‘l = *’0(]"121“21%;‘)'

lin—z— L4 k! r(k‘ﬂ--—z—) I‘(

for 2k-1 g a-n S 2k+l, k-integer, k ; 1,

Hence, for a-n = 2k,

] | | 17 (k-r-1)! 2r
(230 Gyl = — "”r(k o {rz‘o 5——-1——-( zh)
Gz]xh™ i }
2 [log — +o()] ¢ .
ki b

Formulas {2.3a) = {2.3f) actually give the significant terms of the
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development of Ga(x) around 0; !y differentiation they give the principal

part of DiGa(x) at 0,

For ]x]—-—)—oo,

a-n-1
nta-1 : lxl_z—— e-]x] .

2 ¢ g r(%)

(2.4) Gylx) ~

It follows that Gae Ll fo -1l a > 0; by (2.2) gGa(X) dx =1,

Formula (2.2) also implies the f 'owing composition property of the kernel Ga:

(2.5) G, * ;= Ga+ﬁ .
G _(x) being a function of I .| only, define G (r) = Ga”xl) with
lx] = r, Then
a-n
(2.6) dGa(r) = ‘ r K (r)
dr nta-2 1 n-a+2 ’
—2 I -z
2 r F(%)

and hence Ga(r) is a decreasing "~ action of r,

It will be convenient to i: r >duce on the space R™ x R" the measure

uB, 0 < B <1 defined by the fc : wula

(x-y}
(2.7) duﬁ(x,y) = 1 2287V dxdy ,

C(nsB)U2,,+ZB(O) Ix'Y]n

where (see (2.3)),

r'(B+%

(2.8) Gone2 (0} ( 2)
1.3} A nZ

n+2f B € I(n+B)
and C(n,B) is defined by the for: '.a

n+2
-2+l "2 iz 2
(2.9) C{n,B) = 2 T = v — = ]e . _lln-l-ZB dz'dzn ,
(zn-l-lz ] )

where z' denotes the projection  he point z = (zl, e zn) on the hyper-

AN NI CopY
BCS\- RS
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plane z = 0.

It follows from the assymptotic representations of G, (c.f. formulas
(2.3) and (2.4)) that for a > f?" , Ga(x) is an LP function, We will need an

estimate for the norm ]]G ﬂ
aly p

To obtain this estimate we integrate separately over the regions
lx] 21 and lxl £1. We use formula (2.4) for ]x] 21 and for lxl g1

we estimate: 1. G (x) < .K]x]a'h(l +log -Il-r) if -%,- <agn, G (x) s

)(.[1+——(1 |x ]a ™] for n<a<n+l and G(x)<)(,for a2n+l. We get

—-———-I-WSM ' for —n-.<agn
(a 'Fr)

1p

{ [(a-n)'p‘l'B(p-l'l, a-_Ln)]I for n<a<n+tl

(2.10) “Galle <

L X for a_>__n+1.

For o > 0, Gn + G(x) is a continuous function on R”, In some instances
k
Lt
It]?

AI: denotes the k-th forward difference with initial point x. and increment

we shall need an estimate for the difference quotient » Where

teR", k 2 ps» p < 0. From {2.2) we have

i(6,x), i(E,8)_ K
Al:Gn,',U(x) = (Z')-nS'n e {e e 1) d§ ,
R wgtA?
and hence
ki () K
2 ]sin , l
| 1k " -n “Z dg
(2.11) MplAt G, 4ot §(Zr) S;n c]° Zg'iz'p_
1+]e]
s (Zw)‘nzk_pg —fl;(f dg =« 2ememn-ly, B(Lr _Tg)
R (1+I§IZ—Z—

1. K will denote here a constant (which may differ from one formula to another)

depending only on n,
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§3. Standard norm, Approximate norms. Classes FZ%P,

In this section we shall define two norms which arise in connec-
tion with the generalization of Bessel potentials (c.f.[2]). For this purpose

we shall need certain properties of covariant tensors,

Let V(“ denote the linear space of all covariant tensors of order
i.e. of all £-linear complex valued forms Aw(vl, Vyreees VI) defined on the
n-dimensional vector space R" (of contravariant vectors), In every fixed
coordinate system there is a 1-1 correspondence between tensors Au) and

nl-tuples of their components given by the formula Au) (vl, cens VI) =

i i

A(“) v1 .»e V, , where (vl, es e vn) denote the components of the vector
11, RS | 1 1 1 8 8

Vs B = l,...,4 and summation from 1 to n is understood over the repeated

indices.,

Let £ denote the surface of the unit sphere in the space Rn, w, its
area, and E(“ its #-th cartesian power; let Gu) = (B1)004, 91) denote an
. (1) : — an
arbitrary point of T/, 1951 =1 j=1L1...,n and dew = d91 cee dGl the
4

element of volumeof Z

Define now for A“”e Vu) and 1 < p < o the standard norm

nl
(3.1)‘ lAu)l: = '07- S‘le(A(l)(eu))lpdeu) s

n

and the approximate norm (dependent for p + 2 on the choice of the system

of coordinates)

(3.1 1070 = 2 A7

For p = o we put as usual lA(l)]m = ngplAw(e(‘)l and ]Au)-]m =
.rpwﬁn :
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For any Au). B(“)e V(“ we define the corresponding standard and

approximate scalar products:

(3.2) alt), gll)y = f; glA(‘)(e(lgm)de(l) .
1o
(3.2") (a9, 847 = 2 A‘f)B_§H .
Observe that by the orthogonality relation ( otelas = %‘- b4
(where 6 = (6%...,6)) we get from (3.2) =
(3.3) (aft), Bl = (a0, gty

We shall now'deduce some inequalities between the norms ] lp and ] -]p .
Expanding A(‘)(e( 1)) in (3.1) in terms of components, using Hblder

n
inequality and the fact that ( = -leslp)llp is a decreasing function of p we
s =1
get

'A(I)lp

4],

In

n!fPlA0 i p

A
™

(3.4)

A

ot/ lA(‘)”’]l') if pp2
(for p =2, |AW], = [AW], by (3.9).
On the other hand, for every Au)e V(l) there exists a B(‘”e V(I) ’

B(I) + 0 and such that (Aw, B(I)T') = IA(‘)_IP ]Bu)_]p. . Taking into account

(3.3), applying HUlder inequality and using (3.4) we finally obtain

n-j/ZlA(I)'lp < IA(I)IP é nI/PIA(l)_] P P

A
(¥

(3.5) .
n~ P ]A(I)‘]p < lAmlp§- ,%I/Z]A(l)‘]p, p 22

Denote now for any ue Cgo, by V‘lu(x), the (symmetric) tensor of

all derivatives of order t of u at the point x, and define for 1 SP< o

and a >0, m = [a], B=a-m, 0 S B <1, the standard norm of u of

order «,
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m
‘ P \ ,m _Z_l 1 P : ‘
ity g Je ([ s,

If o is an integer, B = 0, we omit in (3.6) the double integral (the

v‘—‘—LL—p—ﬂu = -VIus I:duﬂ(x.ya.

- |x-y]

measure dpo =0),
m

P 2 P

ol 2, 2OTNEH] IPtuemlg ax.
ef 1=0 R

Similarly, we define for ue C%o, the approximate norm of order a,

(.60 |l = Zn;’f)(%r‘ [-S‘Rnlvlu(x).lgdx + S; ) i mlV‘u(x)-v‘ugx)]:{,u B(x,y)].

Jx-y]

If o is an integer, B = 0, the double integral is to be omitted,

For p = @ the norms are given by

(3.7 ]ula,m

.
v ()V‘um]m } ,

max {suplvlu(x)]ma sup | — Jxey]
x Xay

Osf=m x+y
1

(3.7Y) lu-]a,oo:' max {sup]vlu(x)-]m. sup-lul("_)'ll’;,‘im‘] } .
Xey o

O=fxm x x+y

When o = m is an integer, the norms are given by

(3.8) lu]m,co = . x;)sax {s:plvlu(x)loo } ,
slsm

‘ - 1 '
lu_]m,oo =  max {st’:plv u(x) ]oo}'

0=f=m

Clearly, lulo’m = ]“-]O,oo = ]]uHLm . i

We shall denote by ,;a.p’ 20, 15 p g o the class of all functions

o
ue C0 with the standard norm lu]a,p'

For p = 2, itis easy to verify (using (3.4)) that both of the norms
] ]a 2 and | _]a , are equal and coincide with the standard norm in the

space P% of Bessel potentials, The norm ] la is continuous in a; it will
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be proved in the sequel that so is the stan_dard norm l la.p . The latter
is one of the main reasons for introducing the standard norm (the other
being the independence of the choice of a coordinate system), For techni-
cal reasons, however, in most of the considerations we shall use the ap-
proximate norm ] -la.p , this being justified by the following inequalities

which are immediate consequences of (3.5):

-2
Y o], 2 lul,, énm/plu_]a,p for p £ 2,

(3.9)

n-"m/p'lu-]a.p S l‘“]az.p = nwp]uja.p forpz? .

We shall now describe some properties of the classes F%P Wwhich
follow directly from the definition. It is easy to see .that FUP jga
proper functional space whose perfect completion, in the case when o« is
not an integer, is the proper functional space of all functions of C(m'ﬁ)
which are bounded and vanish at co with all their derivatives of order < m,
(C(m’B) denotes the class of all functions in C™ satisfying together with
all derivatives up to order m uniform Hblder condition with exponent f.)

Ya,00<

This space will be denoted by .

i',a.oo<.

For a integer, is the space of all the functions u of c?

vanishing at oo together with all derivatives of order < a.

For 1 <p< oo, .,ya,p is a proper normed functional class, but when
a <np, it is not a proper functional space; it is, however, a normed

incomplete) functional space rel. O, .
prete. 0
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84, Classes 13 Bipk
‘ We shall define in this section the normed functional classes 73%P
which, by completion, will léad to the spaces BYP mentioned in the Intro-
duction,
We shall denote by At the difference operator Atu(x) = u(x+t)—ux),
k

and by Al: its k~th power: A = AtAlz-l .

Define for ue ng, k > 0 an integer, 0O ga< k and 1 $pP< o,

| 85u(a] P I A o
P = Py Lt ax P t
(4.1) "uua,p.k d‘:‘u“an +SR“S‘R" Mn-l-pa dxdt = Jul p S tln+p¢r ’

and for p = ®

. | a0
(4.2) uu“a.co,k = max {s:plu(x)l»sx‘f ]tla } .

Denote by ‘fi;a’p'kthe class of all functions ue C%? with the norm ﬂuna Pk
"0

We shall first prove that if k, k1 > a, then the norms ll Ha ook
s

and " n p.k are equivalent,

Lemma 4.1. Let k, kl

1< p £ . Then for every ue Cgo

k-k
2 ! .uu"anp’k

be two integers,o gax< k s kl and

k-k;-1
7.2 17 Iy

‘(l_za ) I‘(k) Iu'a-Pnkl *

S el p s

Proof. The first inequality follows immediately from the remark
K o kekk g -k o
that |du(x)] = [ *A ui] < 20 )14 utxs 1),
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To prove the second inequality consider first the case when k, =k +1,

We use the following simple identity.

N-1
(4.3) a, - —;N Ay, =- 3 Z ;‘jA"'th :
j=0
(4.3) with N=1 applied to the function AIZt Al:-l-lu(x), 0 <2 < k-1, ylelas
' 1
Elr A“ZtAlz-lu—z—i_-n A‘Z::l Alz-’l-l = - 'zi,H_-l Z (:)Al;“u(x-l' st) .

8=0
Adding together the above identities for £ = 0,1,.,.,k~l, and dividing both
sides of the obtained identity by ]t]a we get
k k - k-1 k+l :
&5 u(x) L Au L s g Ay u(x st)
a ~ k-a @ T Tz 27 () a
It] 2 J2t] It]

£1=0 8=0

Taking LP norms of both sides of the last identity, with the measure
dx dt

It®

x and homotetic transformations in. t (obvious modification for p = ) :

we get, in view of the invariance ofthese norms under translations in

k

lolopr & sram Ilapaca -

The result follows now by induction if we observe that

27K (k). (i) -1) 27 k) ) 7.2 " Ip (k)
<
k; -1 [+
ﬁ (1-22"1) (1-2°"%) r(x) T"(u-z“) (1-22"%) (k)
1=k 1=1
a,ao,k

For p = o, the class 73 is a proper functional space. Its

, <
(perfect) functional completion will-be denoted B”®", (By Lemma 4.1,

o, 00<

B “is independent of k.) It can be proved that B is the proper func-

tional space of all functions u vanishing at co together with all derivatives

of order <a and satisfying the following properties:
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If a« is not an integer, a = m+8, . m -:"-'-[a]. then u is ur;iformly
Bu 8™
bounded together with the derivatives o in any fixed direction
g L2 ' aelal Y

m
6. Moreover, the function of one variable s, J ur(:-l-se satisfies HUlder

86
condition with exponent B uniformly with respect to x, 6,
8 s™ -1
If « is an integer @ = m, then u, Fg seces ——-m-& are uniformly
8
0™ y(x+s6
bounded for all directions8, Moreover, @(s) = ——Tn—r——)— as a function
. ’ 86 "

2
|47 ots)]
of the single variable s satisfies —-—]—l———- < M uniformly with respect to
T
x,6,8 and 7.

Observe that for 1 < p < o, 1BYP jg a proper normed functional

class and a functional space rel. 010.
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Chapter II. Imperfect completions of 7Z%'P and 'rg,a'P'k.

- §5. Some properties of distributions and representétion formulas.,

We will use the theory of distributions for two purposes: first, to
define in the quickest way imperfect completions of the spaces 7-“’13 ‘
and ’f.‘ba'p’krel. ﬂZO {sets of Lebesgue measure 0), and secondly, to establish
different representation formulas (such as inversion formulas, reproducing

_ formulas, etc.) which will serve as the main tools in our investigations,
The easist way to obtain these formulas is to write them for tempered dis~-
tributions in terms of their Fourier transforms; they are obtained then by
standard integration techniques. Then, by applying the inverse Fourier
transforms we obtain the desired formulas in the form of "integral trans-
forms''. It remains to be shown that when the distribution is a function of
some class, its i_ntegral transform is also a function of a corresponding class,
and that this i:ransform is given by the usual Lebesgue integration, or, in

some cases, by singular integrals.

Unless otherwise stated, all distributions will be tempered distribu-
tions.

We start by a brief review of some facts in the theory of distributions
relevant to our considerations; for details we refer the reader to the mono-

graph by L. Schwartz [13].

As usual, & denotes the Frechet space of C® functions of rapid de-
crease, and <' the class of tempered distribﬁtions, i, e, linear function-

als on & bounded relative to one of the norms,

1. Our considerations are still valid for more general classes of distributions,

but the greater generality will not be needed in the present paper.
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(5.1 ol = sup 4 " Dot - | o
[i|gm

The value of a distribution u for e S will be marked as u(g), or
S.u(x) P(x) dx.

For 1 < p g , u is a function in LP(R™) if and only if ]u(cp)] Y
c"cp]] p where l/p +1/p' =1. For p =1, this property would only estai)-
lish tI}:at u is a Borel measure of finite absolute measure. In order to
characterize u as a function in Ll, the condition should take the form u(¢) by

é(lKl)uq)" o where K is the closed support of o, ]K] the Lebesgue meas-
L

ure of K, and 4(t) is a non-negative increasing and bounded function of

t > 0, such that lim 6(t) = 0.
= t X0 ‘

We introduce as usual the derivatives Diu, the differences Alt(u,
and the Fourier transforms u of a distribution u.

In order to avoid any possible misunderstanding, we shall make the
following conventions concerning differences, We shall consider only forward .
differences. The symbol Al:'a;x will denote the difference of order k with
increment t and initial point a, taken with respect to a variable x, In the
case when a function preceeded by the symbol Al:,a;x depends on several
variables, then in the operation of taking the difference, all variables other
'than x are treated as parameters, For example, At,a;x(u('x’ x-yjt) =
u(att, att-y, t) -uf{a,a-y,t). We will use the following abbreviations systema-

tically, If f is a function of a single variable x (where there is no doubt as to -

the variable with respect to which the difference is taken) we will write

¢ k = Ak - Ak ;
At,a.;xf(x) = At'af(x) = At,af R |
We will also write E
k=4 |

t,x;x ~ t;x



26,

if the difference is applied to a function of several variables, and

k _ Ak
At,x;xf(x) = Atf

if fis a function of a single variable x.

Concerning mixed differences, we mention only the following evident

relations

Al: a'xAlic:l a. ;X = Al:1 a. ;X Al: a;x
2 tpapn 18i% ha

if k, t, a, and x are independent of X, and kl, tl’ a), and x) are independent

of x;

K i ok ok da k
At,x;x t),Xix = At;xAtl;x - A1;1;xAt;x

| are independent of x,

if k, t, kl’ and t

A function f in C® is of slow increase if there exists a sequence of
integers k_  such that (l+]x]2)_kmDif is bounded for every derivative Di'
Such functions are multipliers on & i.e., fpe & if eSS . Therefore the

product f(x)u(x) is again a tempered distribution defined by (fu) (cp)' = u(fg).

A multiplication operator by a function fe C® of slow increase is a
special case of a linear operator T: S —» S continuous in the topology of S,
i, e. such that for every norm ” ”(m,k) there exists another norm ]l ”m',k'
such that UTCPHm,k < C"cp]lm,, xt+ With C independent of @ but depending
on m,k,

The Fourier transform of u{x)eS will be denoted Fu = 2E). Itis

a continuous isomorphism of S in variable x onto S in variable §. -

If a distribution u is a function of C® of slow increase then its

Fourler transform is called a distribution of rapid decrease.

It follows that the convolution of a tempered distribution u with a

distribution v of rapid decrease, u* v, is a well defined tempered distribution
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and we have

(5.2) x v = (@nes L
We have further
(5.3) (D.u)® = (1£P 8 = (it. )iE.) ... 3,
J 1 )2
(5.4 (dapa)® = (HE By Yy
(5.5) (G " = (2 ef R | o> o,
(5.6) D,G, " = (20 e 6, @ >0,

It should be noted that Dj(Ga(x)) is a function belonging to L1 for
]j] < a. For ]j] 2 a, it should not be considergd as a function but as a
distribution -- ever; though for x + 0, the derivative in the usual sense exists
and is an analytic function decreasing exponentially at infinity. We denote
this analytic function i)y D'jGa(x). It will be used only for jJ] = a, In this
case the distribution derivative DjGa(x) for pe¢ S can be written in terms

of a singular integral:

{5.7) SDijl (x)p(x)dx = qu)(O‘) + il\rx:) gx1>€DBG]jl (x)op(x) dx ,

where A. is a constant determined as follows, Denote by j(k)' k=1,...,n,
the number of differentiations with respect to X in Dj ; thus ljl -

j(l) +... +j(n). Then we have

Aj = 0 if at least one of the j(k) is odd,

(5.7")

iyt Syt
_ gplile v L. g
j wn F(n{"jL) if all the j(k) are even,

l. Since we use the traditional definition of Fourier transforms, we have (Zr)ﬂz

as constant in the formula -- which does not appear with the conventions used
by L. Schwartz [13].
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Let Tt be a linear operator Tt: S —» S depending on a parameter t
varying over some measure space 7. We assume that Tt is continuous in

S for almost every te 7 . Then for almost every teJ the operator

(5.8) (Tyude) = u(T,q)
def

is well defined and T: : S'—> 8'. Under the Fourler transform, Tt and T:

give rise to the operators
A ) 1
(5.9) T =Fr,#! , P=grrzl,
and for every 9€ & and ue S',
A
(5.10) (T =18 ., (TR =TH .

We will deal with operators of the form

(5.11) ' Ty = S T, pdt peS , .
T

and correspondingly

(5.12) T*u = S‘T:u dt ue S’ ,
J

the last expression being defined by
(5.13) (T*u)(@) = u(T9) .

The following assumptions will be made

{(A) For every g€ & the integral S;"I‘tqp(x) dt exists as a Lebesgue

integral for every x and represents a function of § . Moreover, the opera-

tor (5.11) defined by the formula (T¢)(x) = g Tt p(x)dt is continuous on S .
_ T

(B) For every @e S the integral Sth(p(x)] dt exists for almost all

x and as a function of x belongs to Ll(Rn) ] L@(Rn).

By virtue of hypotheses (A) and (B) we have the formula

. A A A A
(5.14) To(§) = S T,pl€)dt , for every peS .
‘ T '
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The following statement holds.,
THEOREM 5,1, Let ue LP for some 1 $p < oand assl;me that
T:ueeS' satisfies the following conditions:
(5.15) T*u is a function for almost.every t
(5.16) S']T*u(x)] dt exists in Lebesgue gense for almost every x

and as function of x is locally integrable.

Then T*u as defined by (5.13) is a function and

(5.17) T*u(x) = S.T:u(x) dt

almost everywhere,

By our assumption gT:u(x) dt is a function and the only thihg to
prove is that it is equal to T*u. as defined by (5.13).‘ In fact if Qe Cg), then

in view of (B), (5.16) and Fubini's theorem,

S (S.T:u(x) dt) p(x) dx = S‘[S‘ u(x) tha(:i) clx] dt = T*u(cp) .
R" T r R"

We shall now proceed according to the following scheme, In terms of
Fourier transforx.ns we will write identities which can be proved by standard
methods in the form 'If‘ = S"f‘t dt. ATt will be multiplication operators by func-
tions of C® of slow increase and the same will be true of &‘. The same func-
tions will give us the operators %: and '?L‘* acting on S'. We will then know
explicitly the operators T’: and T* as convolution operators; in most cases

T: will be a convolution with a function of rapid decrease, at worst it will be

a singular integral convolution operator. In every case the verification of

conditions (A) and (B) will be immediate, The verification of assumptions
(5.15) and (5.16) of our theorem will obviously depend on the function u and
we will have to rely on results of forthcoming sections on integral transforma-

tions and inequalities to check on the validity of these assumptions for u



belonging to different classes of functions in which we are interested.

The formulas we list below are valid under the tacit assumption

that (5.15) and (5.16) hold.

The variables t, £ are n-dimensional vectors, to is real, k is a

positive integer, 0 < 8 <k. Consider the expression

(5.18) L, o(6) —S §

- R®

Jeltotilt6) 2k

n+l+2p
(ty +]t]2)

S‘oo eito_l 2k q 0 ]g]z
= ]jrcgzr %o ——'mzyr ¥
‘o It (1+]t]2)_—2_—

dt dto

ktl
B cminpalc |sPa+feHB.

On the other hand

3q.

ito o 1(t:6) ) g(oito_1) 15 fomito (omilts€) -ito_ € .
L gl = f S [0 D ™-1)] [e0(e” . =) LICH1) R TI

n+l4ip
-Q0 R (t +]t]2 2
k
o % ( )( 1(1 "1)t°(eit°-1)k"(e‘1t°-1)k"1(e1(t'5)-1)‘ (e’i(t'g)-l)‘-l
7y, v :
n . 2 ) n+lt+l '
o R (tg +]t])
< (e, 6) )2 g-d(t ), 12
k-h 2k-f-4) (1) (e >l1) (e V7 Pll])
= ()( i(-1) (a 2x ) dt .
S;n J,Z;-O L1 H (1 —k)]t] n+1+ZB ]t]n-l-ZB
The last expression is obtained by integration with respect to t (For

a similar reasoning, see [2 ].)

Changing the kernel G( 3_1 +2B to an n-dimensional kernel, we obtain

finally

o

dt
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k

_ 1 Ky Ky, gok-fy, x2k~t-1 (et €)1y i(t,E)_jya
s =, W,,;o“”ﬁ”‘” R L
where
K+l .
(5.20) e = ) sorcp A JofR

Of the three factors depending on B in (5.20), the first is a positive
decreasing function of B for all B > 0. The second has simple poles for in-

tegers 8 > 0 and no zeros on the positive B-axis, The third is an entire func-

‘tion and has only simple zeros on the interval 0 < B < k at integers B, 0< B

< k., The resulting product Ck(n,B) is therefore, for 0 < B < k, a strictly

positive analytic function with simple poles at 0 and k.

If we consider the integrand in (5.19) as an operator of multiplication

A A
Tt' thus T =1, we obtain by inverse Fourier transform the reproducing
formula
k AZk-I-I]_ G L
1 ‘ k, k -1 Tt, (£-k)t “2n+28, 1
(5.21) u= = S Z (1 4 )(-l)k (A, G, ) * (A u) dt
- S B 4 1y ¥2 -t 2 t

Multiplication of both sides of the identity (5.19) by (l+§z)a/z,

0 <ag B, leads to an inversion formula for the operator C'a’ We denote the

inverse operator of C'a by G—a' and we get

(5.22) G_au =
k-2-4;

K

1 ( K kg gty K (2-k)t @
Long rw:) C(SxR-1k-tr “t(eck)

K\ inl,;ol .(1 lt]n-l'ZB

2n+28 (A‘h G

i Gag_g) * (&) at

Especially simple and interesting is the case when k = 1. Then for

0< B<1:
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‘ . Zn+ZB(t) (ei(t g) 1)(0-1“ 5) 1)
(5.23) 1 =
(1+] ]z)B C(“'mczmzﬁm S JepreP (a+]€]5P

which can be transformed into the reproducing formula

(5.24) u=G,,%u + G"'“““(Ac ) * (Au) dt
| =G2p* %+ CERT, 250 ), T e :

Formula (5..24)‘ can also be written in the form

[Gzﬁ(z‘x)"Gzﬁ(z'Y) ][u(x)"u(Y)]

' (5.25) u(z) = c:,le * u(z) + Sn S'n Ix-VlZB duﬁ(x.y)-
R' R '

The corresponding inversion formula for 0 < a £ B8 <1 is

B *u(z)+5 SL [GZB"a(z-x)-GZB-a(z‘Y)][u(x)"u(y)]

(5.26) G _u(z) =G
@ 2 R R® lx‘Y]ZB

duB(xv Y) b

m .
Multiplying (5.23) by 1= 1 z (™M = (-nragiaey
atle[H™ =0 1 =1 (

where m is an integer, m > 0 and transforming the result we get, with

a = m+ﬁ
(52 uta) = Z( ) Z S‘D(")Gz (a-%) Dju(x) dx +
£ =0 b]-z ‘ .
o (z-x)-nfy’c (z-y)][D,u(x)-D uly)] ‘
J__—2a i 2a J J
' 'ingx"“ Jx-y[FP R

and the corresponding inversion formula for ¥y < a = m+8,

m .
(5.28) G_yu("z)) ‘-‘:’Z'o( 1) b;: { D(x)G (z-x) Dju(x) dx +

p‘“‘ G (2-x)-D G, (2-y)][D;ubud-Djuly)]
a- 2a- " J :
+S§ | x- Y]ZBa X dp'ﬁ(x'Y) [
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At the end we include the case when « = m is an integer, From

. = —2-—-1 m Lpsond 11 end ‘
the identity 1 = ) s iy . ) |
’ (+]€]9™ 1?0(1 )Ijl ?1( ) (1€) (i§)’ mentioned before

we then get the following reproducing formula

m
(5.29) u(z) = Z () Z fn‘j"’ Gpml2-%)Djulx) dx ,
1=0 [j|=1 K
and the corresponding inversion formula
. m L
(5.30) ' G__u(z) slzo(f)b;_lfngx) G, (2-%) Dju(x) dx .

In the last formula the integrals corresponding to the values ]j] = m are

understood as singular integrals as explained by formula (5.7).

§6. Regular and singular integral transformations,

The purpose of this section is to introduce a terminology concerning

integral transformations which will be used throughout this paper.

Let {X,p} , {Y,v} be measure spaces; denote LP(X) = Lp(x,u) ’
Lp(Y) = Lp(Y,v). 1. u and v will generically denote measurable functions
in X and Y respectively. Let K(x,y) be a complex valued function defined
on X x Y measurable in X x Y, K(x,y) gives rise to a formal integral

transformation defined by the formula
(6.1) vy = Kaly = { Kexy)uea duta .
X
It is defined for all u for which the integral (6.1) exists in Lebesgue sense

and is finite for almost all y. Denote by‘,‘QK the set of all such u. We say

that for ue@, the formal inte‘gra.l transformation K is properly defined.

1, All measures will be assumed to be g-finite.
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An integral transformation K (or kernel K(x,y)) is p-semi-regu-
lar (p-s.r,} if the subspace QK N Lp(X) is dense in LP(X) and is trans-
formed boqndedly into LP(Y), i.e. that there is a constant Mp - the p-

bound of K - such that [|Kul| < M _Juf .
LP(v) = PT LP(x)
A p-s.r. operator K can be extended by continuity to a unique
bounded transformation Kp on the whole of LP(X), Kp,(Lp(X))C LP(Y).

Kp will be called the p-extension of K.

The transformation (or kernel) is p-regular (p-r.) if Lp(X)C,@K‘
and K(LP(x))C LP(Y). For p-regularity of K it is necessary and suffi-

cient that

1

(6.2) S (S;{K(x.y) u(x) du(X)> v{y) dv(y) < CIIQII,L p]]v]le. 15

Y
for any ue LP(X), ve Lp'(Y),‘ the integrals being taken in the indicated
order, C being a constant independent of u and v. The smallest such
constant C is =M'p. p-regularity implies p-semi-regularity, Kis p-
absolutely-regular (p.ab.r,) if j‘K(x,y)] is regular, This is equivalent

to the property

(6.3)

{ Ky vin aumavin| < Mplel vl 0
XxY L L

for any ue LP(X), \'43 Lp'(Y). Obviously, absolute regularity implies regu-
larity, Or the other hand, for non-negative kernels, p-absolute regularity
is equivalent to p-semi-regularity.

Ifakernel Kis p-s.r. or p-ab.r, forall p, 1 g p g @, wecallit

i

semiregular, regular, or absolutely regular, respectively.

We have the following theorem.
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THEOREM 6.1, If the transformation S K(x,y)u(x)du(x) is p-ab.r.
_— X :

then the adjoint transformation S;K(x,y)v(y)dv(y) is p'-ab,r, .

The proof is immediate by (6.3).

THEOREM 6.2, Let Kbe a p-ab,r, transformation of Lp(X,dp.)

into LP(Y,dv) and M be the p-bound of ]K(x,y)]. Consider, moreover,

the measures dpl(x)'= @(x)d(x) and dvl(y) = Y(y)dv(y) where _ald Y

are measurable non-negative functions on X and Y respectively, satisfy-

ing ¢(x) < A and y(y) < B. Then K is p-ab.r. from Lp(X,dp.l) to

‘l
Lp(Y,dvl) with bound not exceeding MAI/p B]/p.

. .
Proof. Observe that for u, € Lp(X,dul), Vi€ LP (Y,dvl) we have

lo¥Pu | = Jul ana 4P’y b pry

LP(X,dp)

dv) = ﬂvlﬂ

LP(X,dul) , LP'(Y.dvl)

]
Hence for u, € LP(X,dul). v, € LP (Y.dvI) we have

{ (oo Ly ool vy law v =
XxY

< [ (Ixenlond® syl o6 v ele1 " aut aviy)
XxY
< Ma¥®' By | )
1

LP(X,du LP'(¥,dv))

We are mainly interested in regular integral transforms since we
need a pointwi‘se representation of v(y) by the integral (6.1) for all ue Lp(X).
There are no known direct properties of the kernel K(x,y) characterizing ‘
its p-regularity. For p-ab.r. such properties are weli known in the two

extreme cases p= 1 and p = oo:

A = const. < ™ a.e, in x,

A

(6.4) K is l-ab.r,<=> SY]K(x,y)Idv(y)

A

B = const, < wa.e. in vy,

(6.4') K is co-ab.r, &> S;(]K(x,y)]du(x)
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For other values of p the next theorem gives sufficient conditions
for p-ab.r.. Quite recently these conditions were proved by E. Gagliardo

to be also necessary,

THEOREM 6.3. Let 1 < p < o and assume that there exist two

non-negative measurable kernels K1 and K2 such that

(6.5) [K(x,)] g K, () VPR, (e, VP!

and

— {

L
. SKl(x,y)dv(y) <A ae du
(6.6) Y

A

B a.e, dv .

5 Kz(x' y)du(x)
X

lp o 10!
Then K is a p-ab, r. with bound not exceeding A" B™" .,

. '
Proof, For ue Lp(X) and ve LP (Y), by applying (6.5), HUlder in-

équality and (6.6), we get

3‘ glu(x)l [y Jvin) dudv(y)

A

[ufx)] PK, (x, y)dp(x)dv (y) K, (%) | viy)]P’ du(x)de)
SS | 1§ fx

173}

Avp Bl/p' B vl -

Depending on the nature of the kernel K there are several methods
by which we may find kernels K, and K, that show K to be p-ab.r. . We
describe two of these methods which will be used in the sequel,.

METHOD I. We find two measurable functions ¢(x) and Y(y), a.e.

bositive and f:ln_jte, and put

(6.7 Kifxy) = [Keay)uly)/oPP, Kty = [Key)ot/uy)P/P .

The functions cp(ic) and y(y) will be called factors. (6.6) now translates
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into the following conditions for the factors:
©8) (ko g o™, (xinlomant < uyP?? .
Y X

Remark 1. The result of E. Gagliardo mentioned before states that
the existence of factors ¢(x) and {(x) satisfying (6.8) is also necessary in
order that K be p-absolutely regular. More precisely, it is proved that

if K is absolutely regular and M is the p-bound of ]K(x,y)] it is possible

. )
‘to find e LP(X) and ye LP (Y) such that (6.8) is satisfied with A = B =M+e

for any ¢ > 0,

METHOD II. We find a representation of K(x,y) as a composition
of two kernels & (x,2z) and ¥(z,y) ,
(6.9) - Klx,y) = S'@(X.z‘)\II(Z.y)dw(Z) )

Z

where Z is a measure space with measure dw(z). We find further an '"inner
factor' A(z), 0 < A(z) < o a.e. such that

Kl(x,y) = S ] <I>(x,z)])t(z)pl\Il(z,y)]idw(z)‘ < o0 a.e. in x,y,

(6.10)- z

K,(xy) = S | &(x,2)| M2 P’ | ¥(zy)|du(z) < o a.e. in xy.
Z

Thus (6.3) is satisfied, The conditions (6.6) now take the form

S‘S‘]Q(x,z)lx(z)p]‘ﬂl(z,y)ldw (z)dv(y) £ A a.e. in x,
(611 Y2

S'S‘ | ®(x,2)| A(z) P’ |¥(z,y)|dw(z)d(x) § B a.e. in y.
X Z

It is possible to combine the two methods as well as to devise

others adapted to special kinds of kernels,
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In most cases we will deal with p-absolutely regular kernels. In
a few cases, however, we will meet with p-semi-regular kernels; it is
therefore of interest to give some information about them, We start with -

some general remarks.

The subspace 'QK of measurable functions u(x) for which the inte-
gral transform (Ku)(y) is properly defined has the property that with each
u{x) it contains all functions ul(x)‘ majorated by‘ u, i.e, such that ]‘ul(x)l <
|u(x)] a.e. .

By a simple measure-theoretic argument one proves that there
exists a measurable set AT X, unique up to sets of measure 0, which is
the largest among all those sets on which all functions ue,‘DK vanish a.e, .
If A =X we may say that K is singular (suchare, for instance, the singu-
lar operators of Calderon-Zygmund type); in this case QK reduces to the
function 0, If p(X-A) > 0, but also pu(A) > 0 we may call K partly-singu-

lar; in this case, if we restrict X to A, the transformation becomes com-

" pletely singular, Of interest here is the case L{(A) = 0, i.e. essentially
1

A = 0; in this case we call K non-singula .. A p-semi-regular kernel is
certainly non-singular,

The same argument which leads to the existence of the set A shows
that for a non-singular K there exists a sequence of measurable sets ]3i ,

i=12,.., such that
®

(6.12) B,CB,yCX, uB) <o, u(x—Ll) B)=0,

the characteristic function of each Bi belongs to UK'

A simple function is a measurable function taking only a finite number
of values and vanishing outside of a set of finite measure. For every func-

tion u(x), measurable and finite a.e., a classical standard procedure allows

1. The same terminology is used in [21] in a different meaning.
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to construct a sequence of simple functions u J(x) such that lim uj(x) = u(x)
and ]uj(x)l 4 ju(x)]‘ a.e.. These functions can be chosen so that each uj(x)
vanishes outside some Bi' and hence so that each uje,‘E)K. In addition, if

ue€ LP(X) for some p < oo, then lim"u-ujﬂ b = 0,
P

Denote by ,Qk the class of all simple functions in E)K. The last re-

mark leads to the following statements,

THEOREM 6.4, A non-singular K is p-semi-regular for p < oo if

and only if K(ﬁk)c Lp(Y)_a__n_d. HKu"Lp(Y)é MH‘“”LP(X) for uer. K is

p-regular if in addition, LP(X) CQK .

In fact, the above remark shows that QkCQK N Lp(X) is dense in
Lp(X) and the continuous extension of K from Qk to LP(X) coincides with
K on ,QK n Lp(X) since (Kuj)(y) converges by dominated convergence to

(Ku){y) for every Y where S]K(x,y)”u(x)]du(x) < oo,

THEOREM 6.4'. A non-singular K is oo-semi-regular if and only if

- the characteristic function x of X belongs to QK, K(Qk)C L®(Y) and

llKuﬂ o... S Mﬂuﬂ for uef)k. The oco-regularity is equivalent to
L®y) © LP(x) —

c-semi-regularity,

In fact, if LOD(X) n'QK is dense in LOO(X), there must be a uoeﬂx

with ]]x—uol] .. S %. hence ]uo(x)]‘ > -lz-a.e. and x €Jyg. On the other
L :

(X)
hand x 339 implies L°°(X) CQK (hence the last part of the theorem) and

the boundedness of K on L°°(X) follows by dominated convergence:
(KuMy) > (Ku)ly) a.e. in y, [(Kup(y)| g Msup|u(x)] ;Mszp]n(x)l '
x

hence sup](Ku)(y)l s Msupl‘u(x)].
y x
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Remark 2. In Theorems 6.4 and 6.4', the class Qk can be replaced
by other subspaces of ’QK 1 LP(X) as long as for each ueQKn 1P(X) they
contain a sequence uj converging pointwise a.e, to u, are dominated by
some u'e,QK, and such that uuj "Lp(x < ¢, c depending on u but not on j.
For instance, we may take the class c)>£ simple functions vanishing outside
of some of the sets B, (i varying with the function). Another instance of
such a change may be of interest if X and Y are euclidean spaces where

we would like to replace simple functions by Cgo-functions. This is possible

if the sets B-i can be chosen to be open,

We turn now to interpolation theorems - the Riesz-Thorin convexity

theorem [20].
Let1gp g@ 15p, s® 05 651 lgy = (1-6)/p, +6/p,,
so that P} = 9y P =4

THEOREM 6.5. Let K be non-singular, If K is pi-semi-re&ular

(or py~¥.,_or pi-ab. -r.} for i =1,2, then Kis: qe-semi-regular (or Ag=Tes

or qe-ab. -r,) for 0 < 6 < 1.' The qe‘-bOund qu satisfies qugvil‘;leMga .

Proof. 1! Semi-regularity. By Theorems 6.4 and 6.4' the question

reduces to the boundedness on the subspace of simple functions ,Qk » hence
Thorin's proof applies.
. ) P P2
2] Regularity. Since L “(X)CL "(X) + L"(X), the result
follows from semi-regularity,

3] Absolute Regularity. Use I’ for |K(x,y)] and then the

fact that for positive kernels ab. -r. is equivalent to 8, -r.. If p;-ab. -r.

is established by the kernels K, . and K

1, 2,i
qe-ab. -r, can be established in similar fashion by kernels

satisfying (6.5) and (6.6) then
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_ 1.(1-6)q9/P1 1,64 o /P2 _ (1-6)a /Pl . 6q/p"
K, =Ky of K1z°/ .+ K, =K, o K.z.ze’/z .

Remark 3, The extension of the convexity theorem, due to E. M.
?tein (see [15] and [16 ]), to the case when not only the exponents of the
LP.classes but also the measures K and v vary suitably, leads to a simi-
lar extension of Theorem 6.5. The proof applies without changes if one
notices that if K is non-singular rel. j and v then so is the kernel
o(x)K(x,y)¥(y) (o and  finite a.e.) rel. to any two measures (' and v'

equivalent to (L and v respectively.

Remark 4, The notions introduced in this section could easily be
extended to integral transforms from Lp(X) to Lq(Y) with q + p and even
(under suitable restrictions) to transforms between two Banach spaces of
measurable functions. However, there are no known characterizations of
p,q-ab. -regularity of the kind as given in Theorem 6.3 or in the first

method for the case p = q.

Remark 5, The terminology we introduced above has not been used

before. The notions, however - without being specifically named - were

.investigated long ago in many special cases. The distinction between semi-

regularity and regularity was not so sharply drawn. The p-absolute regu-
larity, especially the first method, was very extensively used as a tool to
establish regularity in many special instances (see Hardy, Littlewood,

Polya [10], Ch. 1X). The criterion of the first method was not put in the

general form (6.7), (6.8), but rather in a form adapted to the special cases.

As mentioned before, we deal with integral transforms in this paper
which in most cases are p-ab.r., or at least p-s.r.. In a few cases, how-

ever, we meet with a special type of singular integral operator. The per-
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tinent theorems are special instances of theorems of Calderon-Zygmund

(7]
We consider kernels of the form D3Gm(x—y), ljl =m (see §5, es-

pecially between (5.6) and (5.7)). The following statement holds:

I ue I.P(Rn), 1< p < 00, then the limit

(6.13) viy) = limi; D‘ij(x-y)u(x) dx
€ %0 -y]>€

exists and is finite for almost all y and (6.13) is a bounded transformation

of LP into LP.

The statement does not hold for p=1 or p =m. Hence, whenever we

have to use singular integrals our results will be restricted to 1 < p < oo,

87. The imperfect completions F¥'P, BRYP,

The norms ]u]B P ]u.]B p’ 0 £ B < 1 introduced ir §3 have obvious-
ly a meaning for any measurable function u (they may be infinite). Let

lL<p<ooO0ga=mif, m=[] 0gB<L

We denote by W: the class of all functions ue Lp(Rn) such that
L all the distribution derivatives Dju, |i] ¢ m are functions,

2, ]‘Dju]B’p <o 0g ]_]] g m.

It is clear that for ue Wg both norms Iula,p and luja,p as given
by formulas (3.6) and (3.6') have a meaning and are finite., Also the rela-

tions (3.9) hold.

By standard arguments, similar to those in the proof of completeness
of LP spaces, one shows that W: is a complete functional space rel, 01.0

(the class of sets of Lebesgue measure 0), Also a standard argument by



e A T I P N

PR

43,

regularization 1 shows that F%P ig dense in W: . Hence we have

the following

THEOREM 7.1. w}f‘ is a functional completion of F*P rel, 2.

For p = w, we define W:o as the class of all functions u which together
with all distribution derivatives of order <o belong to L® and, if o is not an
integer, satisfy HUlder conditions with exponent B. Itis clear that 79 g
contained but not dense in W:o. One shows immediately that each equivalence
class of Wc‘:) rel, ao contains one and only one function which is continuous
and bounded with all its derivatives of orders <q all of these derivatives sa-
tisfying a uniform Hb8lder condition with exponent a —a*, o* being the largest
integer <a. All such functions form a proper functional space Iga,ooc Wg,
with the norm of W;. The space i':’a'oo<(the proper functional completion of

@90 ntroduced in §3) is a closed proper subspace of f,a,oo.

F

-1, By regularization we obtain functions up converging to u pointwise almost

everywhere and in LP-norm as p—> 0. Since (Dju)p =Djup for any regulari-

zation, it is sufficient to prove the statement for 0 <a=f <1, Then

2n+2g(t)

L W] . [ Jon -au® a
p B T Ty p TG, 406000 RnW te TtTp

n the 1 . . Gons2plt) o P
The integrand in the latter expression is dominated by W 2 ]I At“uLp

and for fixed t converges to 0 with p X 0. Taking now a function e Cgo
which is =1 for ]x] él, one proves that for fe c® with lflﬁ p < o0,

]f(x)-q;(Px)f(x)]‘B P —= 0 as p™ 0, Double integrals in approximate norms
are handled in a completely similar way as in the case of Bessel potentials

in [3].
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We define now 73%P ag the class of all functions ue Lp(Rn) such that
for some integer k > a the norm
k P
faulyp

- P _
(7.1) ]ula,p,k = "unzp + nl—tln_'l'ps_
R

is finite,
The argument used in §4 to prove that for two integers k, kl > a,

the norms ] ] are equivalent is still valid in this more

a,p,k’ ] la',p,k1

general setting, with constants as in Lemma 4.1, which justifies the omission

of the index k in the symbol 750'p.,
Using again the standard argument, we have

THEOREM 7.2, T2 %P is the functional completion rel. 0, of the

class %a,p,k.

Similarly as in the case of P®® we define the proper functional

space B®® of all continuous functions with finite norm ] ] Ex-

a,p,k’
cept for vanishing at oo, the functions of B*® have the same properties

as those of Ba,oo<.

Let us add the following statement, If a < o' then there is a con-

stant C independent of u such that for every u

@.2) helapc & Clolar,per -

To prove (7.2) we may restrict ourselves to the case when k = k'.
Then the integral in the norm ]u]r; pk can be decomposed into two parts:
1] 44
integration over It] <1 and ]tl 2 1. The first part is majorated by the

’ P
corresponding integral in ]ulg, p.k’ the second by a constant times ﬂuﬂL .
1 44

It follows that
(7.3) AYP I7RYP for a < a'.
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The purpose of this section is to describe the behavior of the standard
norm ]u] ' for a fixed function u and a varying between two consecutive !
integers.

Before stating the main theorem of this section we introduce the space

wm

> » m > 0 (m an integer) of all functions of W{n-l , all of whose deriva-

tives of order m are signed Borel measures of finite absolute mass, In
the definition of the norm ]u]m 1 {see (3.6)) the integral involving the deriva-

tive of u of order m is to be replaced by

‘ (m)
(8.1) S‘ S ]dp.e(m)(x)J d6'\™
n
where 4 = @ u .
0 (m) 561 cee 55m

We shall prove the following theorem:

THEOREM 8.1. ILet 1l < p £ o and m 2> 0 be an integer.

i) If ue W then lim ]u] exists, possibly =+ oo.
- P ax m+l a.p

ii) If 1<p< oo, then lim ]u] < oo if and only if ue W:]H?
ax mtl P

‘e m+l
if ue Wp then aﬂli;nll l l“]m+1,p'
i) Um Ju], | <o if and only if ue w5 if ue wTH then
ag m+l
Hm Jul, )= o]y,

ag m+l

[+ 4
0
iv) f 1 g p< oo, and ue Wp » @y >m, then alix?n]u'a'p = lu]m.p'
v)  lim u] o <o, if and only if ue BT g prthe

ag m+l

then  lim |u}

ap mHl a,0 = Iu’lm-l'l,oo'
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Proof, It follows from the definition of the standard norm | | p
that it is suffficient to consider the case when m = 0. Assume first that
l1<p<o, For 0<pB<1 the standard norm may be written in the form

P (P - P
o= lalf ¢ § § et oy )
L RERP .

(8.2) bx-yl

P 1 Ganrzpl® \ 2
11, + cpmoygor g St lawlfp e

The expression (8,2) has a meaning (it may be infinite) for every ue LP,

Observe that for B # 1 (see (2.9))

1 2n

- n’ n

Rewrite now the integral in (8.2) for weLP in the form

G, qalt)
1 n+2f P
e N [ PPN () Sl; e ﬂAtuﬂLp dt

(8.4) 1 Gont+2t) P
= A dt
CE PG 2nr28) Yy HPFPF 1ol p

G (t)

1 2n+2f3 : P = T (n "

+ faul dt = I'z(u) + I(u) .
C(n,B)G 54 250) il:l L. 2 R

A simple computation yields
dt

p-1 2p w
8.5 n( 2 “unp = 0 “u"p ’
(8.5) gl £ e LP 'ﬁiﬁ?ﬂ - TW,BeB U0 p

Jz1
and by (8.3) '
(8.6) Ifu) —» 0 for B A 1.

According to (8.6), to investigate the behavior of luanP as B 1,
it is sufficient to determine the behavior of I'B(u) as B r L.

Define now
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P
1 ol
(8.7 Io(u) = t L
B Cln;B) dt
) ils {7 e
Clearly, Iﬁ(u) is well defined for all ueLP; moreover, we have with
(1)
Ay= lTinl M = min Gn+1+ZB(1) ,
sl G (0) 0sB=1G (0)
ogﬁg ] 2n+2f n+l+23
(8.8) AnIB(u) g I'B(u) < IB(u) R

and therefore I.B(u) is finite if and only if Ib(u) is finite,
| B
On the other hand, if ue Wp 0 with 0< Bio< 1, (l—Bo)p < 1 (and con-

sequently I, (u) < ®©) we can write for 82, ,
q y B¢ ' z P

Cn.B) oy J2ne2pl? Gzngaplt)
C(n:B)G2n+2B(O) ]t]§1 MP(B"BO)

(8.9) ]IB(u)—Ib(u)] < Igfw)

Gons28(0 = Con42p)

It]

respect to t and B, BO $BL 1, we get by (8.3)

and since (c.f.(2.10))

is bounded uniformly with

(8.10) IIB(u)—Ib(u)l —> 0 for B AIL.

IB(u) can now be represented in the form

1
= 1 1
where
A Lu P
_ sb

(8.12) ¢p(s,0) = ”-—-—-—s : ]Lp .

<
Since ﬂAsepuLp hY ZHA%9 u]]Lp we get

(8.13) 9(s.0) & 9(56)

for every s.

1. The idea of introducing the function ¢(s,6) and using the inequality (8.13)

is due to E. Gagliardo.
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Rewrite (8.1l1) in the form -m

1ot = gy § ( Z f_m_l'ﬁénraq’“'e’d“)

m=0 2

'CI_B)SS. T*TB-'IT'E: m(B-1IP 2™ 6) 4 .

m=0

In view of (8.13) the sequence {cp(z 8 9)} is non-decreasing for

every s and 6, therefore applying summation by parts

to the series

under the sign of the last integral, we get

8.14) =
( B(u) @ m
§ 2(m+1)(B-1)P[q,(2"““15,e)-cp(Z' 8,0)]

C(n,B)(1- z(B l)p).gg RE (B I)

m=0 ;
+ cp(s,G)J ds dO .
In view of (8.3) we have
1 2 n 1
(8.15) lim = 20, .
BA1 Cla,p(-2P-TP) — P, TogZ

On the other hand the integrand in (8.14) is an increasing function of

B, 0 <Bg 1 and taking into account (8.10), i) follows.

To prove ii), assume that 1 < p < o and lim ]u]B P < o, Then in
BA 1 ! :

view of (8.10) there exists a positive constant M and a set EMC Z of posi-
tive measure such that

i 1 foe)
(8.16) S‘ _IT(BI'-'DF Z 2t (1-Blep rm-L o) o275 6)] -l-(p(s,e)} ds < M,
2 8

m=0

for all GGEM and 8 <1l. Invoking now the definition of (8.12) we conclude

1. More explicitly we use the following version of the Abel formula: If

© @
- - ing, < 00, b =
a 2b >0, {am} non-decreasing mzobm oo, then mzoa
o
-I-E(a -a_)s with 8. = Z b, ,
80%0 m+l “m’ m+l m’1=m‘¢
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AZ"‘sGu
that for almost every s€[lf2,1] and 6¢XZ,, the norms {—=—29 are
M -y LP

uniformly bounded. By reflexivity of the space Lp(Rn) (1 < p < ) there

exists an increasing sequence of positive integers m, and a function
AZ -my eu.

n
ueeLp(R ) such that ST

—> ug weakly in LP, By a standard
ks

reasoning in the theory of distributions we conclude that ug '5'9 Choosing
61. cens Gne Zyy as any system of linearly independent vectors, we conclude

du du p 1 , 1
that W' . 'FG_ € L' and consequently ue Wp . Conversely, if ue Wp

then applying the Minkowski inequality and Fatou's lemma, we get

lim
s >0

l] ]] and consequently, taking into account (8.10) and

the fact that as B/ 1 theintegral in { 8,16) converges increasingly to

P

log 2 lim H—Z—-:si we get lim IB(u) = = -——g ﬂ d9. This com-

m-e»co 2 LP

pletes the proof of ii).

To prove iil) we use a similar reasoning as in the proof of ii),

" Assume first that lim ]u]B < % As in the proof of ii) we conclude that
By 1

A
for some sequence {s }, 8 \ 0 and O€Z,, the norms ]] 5,0

ﬂ 1 » are uni-
L

formly bounded., By the theorem about vague convergence of Borel signed

measures with absolute total mass finite, we can find a subsequence {s;l}c

A Lu
{sn} and a measure dp,e with absolute total mass luel g lim inf u-_s%ul_,l

A, u
such that —;,‘1-9—-dx converges vaguely to due. Using again a standard

n
reasoning from the theory of distributions we conclude that Hg = -g-g » and

consequently for every GEEM, -g% is a signed Borel measure with total

a'baolute mass finite., Therefore uer1> .

Assume now that ue W11> . Then, for every 6, 19] =1,

1. See {10], Prop. (203).
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lim u_(x%)_—_ujx_) =u9(x), where ue(x) is a signed Borel mea.sm;'e with
tso-t;f absolute mass finite, the limit being understood as a vague limit,
Introduce the system of coordinate axes such that the xn-axis coin-
cides with 6, Then dpe is a Borel measure‘of the form dx'dvx, (xn) where

the measures dvx,(xn) are of finite total absolute maass on the xn-axis for al-

most all x' and such that ]ue] = &n_llvx,]dx'. dv,, is the distribution

derivative of the function u(x',xn) for fixed x'. We can write

A e '
(8.17) ][—:—euﬂ L= 'IES. S Julx'#(1+8)6) - u(x'+ 76)|dx' dr
L n-1

-o RT%

a0 T+ Q@
s 1;5‘ Sn-l S ]dvx,(xn)ldx'd'r = %g [f(r+8) = £(7)] dT ,
-0 R T ‘ -0 .

T
where f(7) = ]Hel[‘m <x < 7] =‘§n-1 S‘ ?]dvx,(xn)]dx". f(7) is an increas-
‘ _ -
ing function of 7, such that f(-o) = 0, f{)= ]p.e], and therefore the last

Aseu
s

" integral in (8.17) ylelds 1lim |
8 =0

"L' s ]pe]. The proof of iii) is now
" completed in exactly the same way as that of ii).

iv) If ue.Wfo the integral in (8.2) can be estimated for B g Bo as
follows (c being an absolute constant),
P
(8.18) - |2 = 20 gy gty
| S;n‘gn Jx-y} A
= G, 124(00C(n,B) Ux-yPe " TPe
) 2n+28 _ lx-y]gl A

2p-1

P .
, ‘N S t) [
"ule RnGzn+zp‘) dt
Since for B\ 0, -c-‘:‘—m —» 0 and all remaining factors are bounded,
(S Ga(t) dt =1), iv) follows.
o

v) follows immediately from the observation that lim ]ulB o =
’

Bal
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lim ufx+s0) ~ufx) =p6(x), where ue(x) is a signed Borel measure with
s—-»0 8 '

total absolute mass finite, the limit being understood as a vague limit.

ma x(sup u(x), ;up ]E(.L‘l)] ).

Jx-y]
Remark. If p = oo, iv) is not in general true. We have then

lim] IB: = max(sup]u(x)], osc(u)) where osc({u) = sup]u(x) u(y)|.

B\0 X,y
Corollarz. o gac< o' then for every ue'W: , 1 £pPg o,

lula'p ;.<—. Clulal'p

'where C = max(1+4n,.2(0.8)'2A;11), where A is the constant of ineguality

I
(8.8). Consequently, W: D) W: for a'> a.
Proof. It is sufficient to consider the case when O La< a'é l. Com-
bining (8.4), (8.5), (8.14) and the fact that the integral on the right hand side

of (8.14) is an increasing function of B we get for 0 < B < B'< 1
< Zp-lwn 1 C(n,ﬁ')(l-z(ﬁ l)P) llb
lule, = {max[” CEARE * *n "o g 2P ]}

and the result follows by an easy estimation of the constant in the latter in-

l“lﬁv,p

equality,

59. Auxiliary inequalities, In this section we shall establish some in-

equalities involving kernels Ga which will be needed in the sequel.

We denote by n' a positive integer n' < n, n" = n-n'. Unless other-~

wise indicated x', y', z', t' .. will denote projections of points x,y,z,t,...
'
on the hyperplane R® : Xoigl Do =X, T 0, x", y", 2", t", ... projections
"
of these points on the hyperplane R : X = =X, = 0. Accordingly,
!

dx' and dx" will denote volume elements of R* and R*

The letter ¢ will stand for (in ‘general different) positive constants
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depending on various parameters. In all considerations we will assume
that the orders a of the kernels Ga' and orders of occurring differentia-
tions and differences are bounded from above by some fixed but otherwise
arbitrary number M > 0. The letter X will be used to denote (in general
different) positive constants depending only on n and M, In the cases when
behavior of constants is of importance we shall say that ¢ is majorated by
f(e. By vs++.) if there is a constant X such that c < Ri(a, By ¥s++.) in the
considered region of these parameters.

In several instances we shall use the following

Young's inequality: fe LP, g€ L%, 0 < %-ﬁ- é' -1 = -11-_- then f ¥ ge L

sd ool , glel lsl g -

From the differentiation formula (2,6) it can be deduced that for any

a > 0 and a multi-index j, ]j] < a,

(9.1) ]DjGa(x)I < }([Ga(x) + a-a]j] GO'-M (x)] .

From series expansions of Ga (see (2.3a) ~ (2.3d)) we also get, with an

arbitrary multi-index j,

[ )Ca]x]a'n'bl for agn+j and |j| odd

___)‘d_a___lxla—n-b]‘ for a < n+Jj| and Jj| even
ot - == e e

(9.2 IpG,ml < \ X for apatl| and |j o

% for a>n+b]ﬁ_n_qu] even .
. a-n- )

Also for ]x] <1 and even ]J] ,
xa]xl"-n'm(l{-logﬁ) for agn -I-bl

9.2 |p,Gx)} < -
(9.2 | J d(x)l = { X(1+log 1—1—‘) for azn + Jj| .
X
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For any multi-index j, ]J] < a, (9.1) implies

-1
(9.3) D,G,e¢ LB ; S;{n D6, (a)]dx g Kla- ih .
Using (2.2) we easily obtain

(9.4) S G,x) ax' = S G, (! dx! = (21)‘“"/20‘3“")(:‘") .
R® R® .

(If n' = n, the right-hand side is of course 1,)

Let o > 0 and consider the expression S‘ IAtGa(x)l dx, Choose the
n

R
coordinates' axes in such a way that the vector t is parallel to the x  axis.

Using the fact that Ga(x)' is a decreasing function of ]x] we can write

(Jt] = t > 0), in view of (9.4),
Itl/2
g JAG,(x)] ax = ZS S G, (x) dx dx'
Jo SR
/2 i o
= 2(2m) T‘S‘ G(l)(x )dx = 2(27) TS‘ Gu)(x ) x(x )ax -,

-Itl/2 -0
x being the characteristic function of [- Jal ) -lt}- 1.

By the Parseval equality we get for a <1,

'Pz:'}'msln#l d
AG (x)] dx = 8(2n) dn—82) t sin 1 _dn
inltaxlx (2r yw (2x ““S

n( ltl +4n°)
Z - 4a
8(21) (1~ n)
Itla S‘ cos l (lt]2+4n )a/Z (ltlz+4 Zl-!-a/l]
. n-1 o Z(1+a)sin
" 2Ta 'Z'

= 8(27 dn,

(27) It] ‘S‘O n (H +4n )a/Z .

(9.5) S |4,G,(x)] dx g l_{%lt]" for 0<a<l,
: R*
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Similarly, one gets

(9.6) S |4,G,x)] dx g a‘-’% It] for a>l,
R

We could also get the inequality

S |a,Gy ()] dx ¢ K(1+log L), Jt| g1,
Rn ]tl
which, however, will not be used.

Similar inequalities can be obtained for derivatives of the kernel Ga'

We have, for |j] < a,

(9.7 AD.G (x)| dx < Jea It ‘blg | <a< i+l
‘S;nl tja = (a-.ljl)(l-a-l-lj]) la b b
and
(9.7 S lAtDjGa(x)ldx g —£_}| for a> [+l
B® a=j] -

In view of (9.3) it is enough to prove (9.7) and (9.7') for lt] < -12-. For
these values of ]t]. (9.7) and (9.7') are obtained as follows. The integrals
are divided in two parts:

So8 eb
R b <2ff  hd>2f

The first integral is evaluated (in (9.7) as well as in (9.7')) by using

(9.2) or (9.2') and the inequality ]AtDjGa(x)l < leGa(x-l-t)l + ]cha(x)l. To

evaluate the second integral we write

| H
(*) lAtDjGa(.x)l < 30 kil Iek‘gq( D;G,(x+76)| dr,

where 9 = —t— = (91.....9n).

| ft] - -
To obtain the desired evaluation in (9.7) we use (9.2) for the derivatives

of order lj] +1 in ( *) and integrate botH sides of () over lxl > Z]t]
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(we use here %]x] < |x+ 78] < %‘]xl). The evaluation in (9.7') is obtained

even more simply by integrating both sides of (*) and using (9.3). ;

By a similar argument, we get

S ]AtDJ. Gbl+1(x)] dx < X|t](1+log -l-I;T), ltjs1,
Rn

but this inequality will not be needed.

We shall now estimate the integral ! ]‘At Ga(x)l dx', with n' < n,

n" =n —~n' 2 l. We shall restict ourselves to the case when 0 < a < n''+1.

From (9.4) we have (note: t =t'+t", x=x'+x")

(9.8) S ']AtGa(x)] dx' < g G,lx) ax! +§ Gyl +t) dx'
R R" R"

= (2072 [l ) + 6" 4o ]

On the other hand,

(9.9) ‘Sl;n']AtGQ(X)l dx' < S‘nlet,ca(x)j dx! +§n']At,,Ga(x)] dx' .
" R R

The first integral on the right hand side of (9.9) can be estimated by
an argument similar to that in the derivation of (9.5)., Without loss of gen-
erality we can assume that t' has the direction of the X axis., Integrating

separately over the regions where’ ]x' +t'| < |x'] and ]x'+t'] 2 |x'| we get

‘ _n'-l Jtr)/e
(9.10) S!;n']At,Ga(x)l dx' = 4(27) =z S Gz(ln +l)("n' X dx , .
0‘

In view of (9.2) for |j| =0, the latter formula gives
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S‘ lAt'Ga(x)l dx' < [(n"+l-a)(a-n")]-llt'la-n" if n"<a<n'"+l
n' = —
(9.11)
S‘ 18,6, )] ax' g xa|x ™" for 0<agn".
R’ '
The second integral on the right-hand sride of (9.9) can be written

in the form

(9.12) S ,]‘At"Ga(x)l dx' = ‘z,r)'n'/Z]G‘in")(xu) _ Gén“)(X"'l't“)]‘ )
B

Assume that |x"| § 0 and |x"+t"| $0. Since G‘in")(y") is a func-

tion of the radius r = ]y"] only, we get from (9.12), using (9.2),

lxu-l-t'll dG(n”) lx""'t"l‘
g |841Gy )] ax' g (2n)272] S' 1) ]
ol

T dr < Xa S. _E’%T'I
e ot -

l\’.(a-n")-llt"la_n“ if n'"<a<n'"+l,

(9.13) S ]At,,Ga(x)l dx' < {
Rn' )(a[min(]x"l,]x"+t"])f-n“-1lt"] if 0<agn",
The last inequalities combined with the corresponding inequalities

{9.10) and (9.11) yield

(9.14) S ]8,G, (x)] ax' g
nl

)'(.[(n"-l-l-a)(a-n”)]"I]t]a-n” if n"<a<n'"+l
R {

)(a[min(lxul'lx|:+t||l)]a-n“-1H if 0<a én" .

(9.14) is now combined with (9.8) using the following remark. If for
positive numbers a,b,c, a <b and a < ¢, then for arbitrary 6, 056 <1,
we have also a ébecl-e. Applying this remark for o <n" to (9.14) and

(9.8), and using the inequality (see (2.3a) and (2.3b)),

G;nll)(x“) s lta(n--_a)'ll’;"la-n" » for @ <n",
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we get, with arbitrary 6, 0 £6<1,

cltla-n” if n"<ag<n'tl; c< )t[n"‘i'l-a)(a-n")]'l
(9.15) S‘ lAtGa(x)l dx! é{ = <
R Cltle [min( Ix”l» lx"'l't"l]a-n”-e if 0<a<n"
¢ £ Haln'-a)®1

The following corollary to (9.15) will be needed., If 0 < @ <n'", and

6> 0 is such that 0 < @~6 <1 then
(9.16) S‘ ]AtGa(x)“x“]‘-édx < c]tla-a i €< )(‘cv[n”-o.r)(a-cS)(l-ar+6)]"1
Rn

We outline briefly the proof., We have

S |a,G ()] Jx| %ax = gx S' |A,G (x)] e Paxt| ax
- g herre]hett > e "+t" o

R

In the first integral on the right-hand side of the formula above we apply
the second inequality (9.15) with 6 =0 for lx”] St and 6 =1 for ]x"] bd ]tl

We get

18,8, b dx'dx"<0[£ e "= B g ] Ig]x"]a_n”_é-ldxﬂ
"<l "|2 el

and the desired estimate follows. In the integral over ]x”l 2 ]x"+t] we

| W] < e B

divide the integration over x' into |x" +t"| < Jt| and ]x"+t"] > |t| and pro-

ceed similarly.

The previously obtained estimates will now be extended to higher
differences. The basic formula will be the following: for 0 < k' <k, the

coordinate axis X being chosen in the direction of the vector t + 0,

(+0) Su(x) = ' 4 'k'S S‘—k-ru(xi-t('r footr N drp..dry,
*

Formulas (9.3), (9.5), (9.6), (9.7), and (9.7') give now for k 2L
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xata- P te-or b for [ << ) 4

xla- Ji] -k for Jjj+k<a.

(9.17) g | 4D, G, ()| ax =<{
R

: . : k _ k-1
In the first case, if 0 < a-bl él/Z, we write At DjGa‘ = At AtDjGa

and get by (9.7) the evaluation Xa(a- |j] )-llt]a'b]. I 12 < a-|j| k=12,
we write y = (a-bl )/k, Al:DjGa = AtDijl'i'Y* AtGy*' .o X AtG-y and apply
(9.5), (9.7) and repeatedly Young's inequality (with p =q =r =1), which
leads to the estimate )(,altla'ljl. If k —%,_- <a=-|j| <k, we use (+*) with
k! =k-1 and u =DjGa and then apply (9.7) obtaining an evaluation
Kl +k-ar 2 b,
In the second case, we use (¥*) with k! =k, u =ch'ar and apply (9.3).
The extensions of formulas (9.15) and (9.16) to higher differences will
be needed only for t -'_=t'€Rn'. We assume k 21, n'2 1, n'" 21, hence

n;n' -l-n“;?..

019 (&G ax gel P R* "0 for a<nrtk, maxf(a-n"),0] g0k,
lfl'

The constant ¢ can be expressed in the simplest way by putting 90 =

max[(a - n"),0] and writing 6 = Bo(t-T) tkr, 0 <7 <1. We have then

c= )(a]n"-a]lr-l (n" +k-a) " for a $#n", k>1 and a~n" Sk-1

c = )(,(n"+k-a)-2'r for k>1 and k~1<a=-n"<k
(9.18){ c = ){a]n"-—a]"-l (n" +1l-a) for a + n" and k =1

c= ne'l : for a=n" and any k 2 1.

”

One should notice that for o =n', 6 has to be strictly positive,
The inequality (9.18) for 6 =k is obtained by using (x*) with k' =k
and u= Ga(x). then applying (9.2) and integrating over Rn'. The resulting

constant c is )1,a(n"‘+k-a)-1.
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When o« :]: n", we can take the other extreme value of 6, 60 =
max[(a=n"),0]. For a < n", this means 60 =0. We write then Ak,G =
e (At'c'a) and the inequality is given by (9.8) with t'" =0 and with con-
stant Ma(n' -a). For a>n'", 90 =qg-n'", If n"<a<n"+l1l and k =1, the
inequality is given by (9.11). If n" <a<n'"+l and k 2 2, we write A1:Ga =
(BuG ) * (A

) integrate‘with respect to x' and apply (9.11) and

atn' a -n'

for the second integration (over Rn) use (9.17) with j =0. Finally, for a 2

1

) # (857G,

n'"+1, which implies k > 2, we write Al:, G, = (4, )

Gn" + vy
(1)
with « =% if a-n"< k-1 and y = -Eﬂ- if a=-n'">k-1 and argue as in the

preceding case.

In all previous cases we obtain (9.18) by combining the evaluations A
and B corresponding to 6 =6, and @ =k into A~"BT. The remaining case

a =n'" is dealt with presently.

We write SIA]:,Gn,,(x)I dx' < &ngt,cn.,(x)] dx'. By (9.10) this is ma~-
jorated for 0< 6'<1 by

It'l/2 i/ ]
&S c,‘“ )y oxtdx < ;cS (s2+ "% st <Kkmf” 9§

e ]PheE

and the resultis obtained by combining the latter inequality with that for 6 = k.

We next extend formula (9.16)

(9.19) S' ]Al:,Gd(x)”x"]-édx < cfp?® for s<n", 0<a-5<k,

= )(,max[(k+6-a)-l(k-l'-n"—a)_z. dln"-a]—l(a-é)-l, ln"-al'l(n"-é)_l]
-2 for o §n"
c =NX(n"-8) © for a=n'.
The proof is completely similar to the one of (9.16) using (9.18) instead
of (9.15).
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Remark, The constants in (9.18) and (9.19) are not the best possible;
they become infinite when a —~n'' for fixed 6 > 0 in (9.18) or fixed 6 < n"
in (9.19) which they should not be in view of the evaluation for a =n'. In
the present work we shall not need better evaluations. It would not be diffi-
cult, however, to imporove them by ma;king more thorough use of the exact

formula (9.10).

Our next two formulas concern differences with respect to two differ-

ent increments t and tl'

For 0 <f <k, 0<B <k, B+,81_<__a-h]

(9.20)
k . B
3;,1' &4} DG, ax < 101+ B":Hgl V-85 L -8y 1P by |

Decompose j = i/ 1i', hence bl = H + [i'|]. Write then

n
S‘R.]Al:Al:iDjGa(x)] dx <g S S]A DG 4t~ lAt DG | 4ply-2)G, ] - a2 -

dx dy dz . .
If «= |j| +B+B, we have only a double integral. Apply then Young's in-
equality and (9.17) to obtain (9.20), at first with a constant depending on
|i] and Ji']. Making the two extremal choices |i] =0 and [i'] =0 and

combining the resulting evaluations, one obtains the desired constant.
For n'gn, 0<B<k, 0<B <k, B+p ga-]i,

(9.21) S g el Br &k A t,c(xu axaty < chff

with ¢ = X [min(8, By, k-8, k -B)T k-8 e -8 2 +§B1!,-)
In the proof we divide the integration relative to t' into ltll < Itl
and lt'll > ]tl. For 'll < It] we apply (9.20) with 8 and Bl replaced by

B-€¢ and Bl-i-e respectively, where € =1/2 min(B, Bl'(k'B)’(kl'Bl))" For
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]t'lj > |t| we apply again (9.20) but with B and B, replaced by S8+ €

and Bl-e respectively.
We finish this section with the following inequality
k
] At,DjGa(x)]

(9.22) \S‘ S. WTET__- dx dt' § [« 50_1' n' .S_n, Y > 0, and
' ! -
R' R*

minfe-| j|-7, k=v]= ¢ >0, ¢ = Rrvlk)Tt.

Integration over t' is divided into ] t"] < 1 and }t'] > 1. In the first
k k ‘ . .
part we write ]At'DjGa(x)] < S‘lAt'DjGa'(x-z)]Ga—a'(z) dz with o' = lJ] +
v + 7/2. Integrating over x (where we apply (9.17)), then over z and finally
over |t'] < 1 we obtain an evaluation < )(_(fy+7/2)-l(k—-'y)-17-1. In the second

part we write S']Alz,DjGa(x)] dx g ){,S‘ ]DjGa(x)] dx which by (9.3) gives, after

integration over [t'| >1, X(a - [i y! 'y-‘l < K(y+rf2y? ‘7-1-

§ 10, Special integral transformations.

In this section we will describe certain regularity properties of inte-
gral transformations occuring in connection with the representation formu-

las of §5.

The properties established here (in particular in propositions 1 and 2)
simply that for ue W: and ue'ga'p with suitable o, the integrals occur-
ing in the representations formulas of section 5 considered as integral
transformations applied to u, its derivatives, difference quotients of u and

its derivatives are p-absolutely regular (in some exceptional cases p-



62,

semi-regular)., Consequently, for u in a suitable class W: or 6"’9

the corresponding identities are valid pointwise almost everywhere. Fur-
ther consequences of this fact will be presented in sections 11 and 12.

We use the same notations as in §9: n' is an integer, 0 < n' g n,

;'l‘jx:t’ dp' (x '.t')—rd" a’,

k1"

We recall (c.f. 8§6) that the statement k(x,y) is a p-s.r., p-r or

n" = n-n', du(x,t) =

p-ab.r. with measure spaces {X,du} . {Y,dv} means that the transforma-

tion &(K(x,y) u(x) dy. is p~s.r., p-r., or p-ab.r., respectively.

Proposition 10.1. If a- b] - %'-' > 0, then the kernel K(y,x') =D§Y)Ga(x'-y)

1
with measure spaces {Rn,dy} ) {Rn ,dx'} is p-ab.r.. For a-lj]-n" >0 it
is ab, -r...
Proof, For n < n' the proposition follows directly from (9.3) and
Young's inequality; the bound for the transformation k is in this case major-

ated by —)-(’—

a-h|

For n' = n we consider first the cases when p =1 and p ¥ w. For

p=l, a—]j] > n" and condition (6,4) must be verified. By (9.1), (9.4) and (2.34),

g lDG(x'-y)ldx'sx[G‘ Ve 2 ol ¢
R N

a-f] mp
If p=oo, a»lj] > 0, (6.4')has to be checked. By (9.3)

S |G, (x'-y)| dy g = .
a-Jj

Let now 1 < p < oo, -%: <a-lil. In this case we apply Method I of §6

with 9ly) = [aGl 1) (5" + (a-BIG Ny IP/P and yix) = L. By (9.1) and
(9.4) we get
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g DG, tx-y)|axt g Ko [ l(y">+(a By = K ()PP
R = a-j] a-ljf

On the other hand, using again (9.1) and (9.4) we get

SIDG -yl e iy +a-bhGl Nty PP ay' ay
< X [aG(nl.' (y') + (a_bl)G(n“)(yll)]p' dy"
8 g el “

X
In view of (2.10) this is ¢ P(
= (el - -ntp)P

proposition follows from Theorem 6.3 with the p-bound of the transforma-

tion majorated by

(10.1) M, < Kle- Jily Ha- bl-——)

. "
Proposition 10.2. Let k be an integer, k > 4 >0 and let a-b]-%—- 2y

kK oWg
B Dy Gy xY)
Je]”

1 ! )
R' xR", d'.l'(x',t') has the following properties

then the kernel =

with measure spaces Rn;dy s

]
i) a-bl—%—>—y then K is p-ab.r. for 1< p g oo.

"
i) If hl= 0, a-%— = vy then K is p-ab.r. for 1< pg oo,

iii) If n" =0, and a-b] =y then K is p-s.r, for 2< pg o and its

adjoint kernel is p-s.r., for 1<pg 2.

Proof, i) We write, using the composition property of Ga .
Kk dNG xy)] = S k plz) . -2 dzl
IAt:';x'ﬂj Ga(x-y)] ]; nAt';sz Glj]+y+e(z Y)Ga-lj]‘--y-e(x z) dz

lSAt';YD l+'Y+€(z y)Ga bl - €(x' z)dz]
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1 .
with ¢ = i[ mink-y, u-lj]-'y-n'yp) > 0. We apply now Method Il of §6
" Ny
with inner factor A(z)= [G‘Srib)] -'y-e(z“)] ¥p, By (9.4) and (9.22) we have

lAtl Zl)_] Gbl+7+ ( —Y)I
g g S R A(z)pGa_bl_,Y_e(x'-z)dx'dzdt'

]‘A, oi“lg z)| -
,._Sg t's ]tl'”g“.%e dzdt' < K(evlk-v))"

By (9.17), (9.4), and (2.10) we get

lAl:| ( y)l '
B YJ DJ+% M2V P G x'-z)dyd
S;ISR‘II ]tll'y (z) a"b, -‘Y-e( )dydz
185, Ve - (z-y)] \
sy bl P .
é ‘S;.n‘S‘Rn lt ]'Y k( ) Ga-ljl'-‘y-e(x )dydz

- ! ' p'/p
< K'(bl ) ‘Y-l(k-'Y) 1 Sl nS 1G¢£rjbi'7;€(z‘u)]‘ Ga"ljl-'Y"G(Z) dz'dz"

R R

It follows by Theorem 6.3 that the bound Mp of our transformation

can be evaluated in the present case by
1/p! ' -1
(10.21) M, g K(Jil+) [vevp(k-v)(a-lil-7-n'Vp)1+]’lp ] . where
e = Zmin[(k-y), (e-}j| -y-n'Vp)] .

i) In this case we shall apply Method I of §6 with the factors
aty) = [y and yxten =1,

We have, by (9.19), with e = vy +n'/fp, & =n"/p,

pYi-1
< K(lil\“f)'y'l(k-'y)'ls‘ 15 - e Paans k(b iitvita-bl-v-nre) ]
R
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K -nt
as, . (G (x-y)] |y
, _ t;x'
‘gn]K(st :t)l¢(Y) = S;n ltlla-nW dY .S'. .

On the other hand, by (9.18) we have, for |t!| & lx"l
[ el an g clyro™" = o
R

and for ]t'l Z ]y"],

ey g a<an
{1 qumylarg { elyl™pl® & a=av €= oo
T
R c‘h.la-n“ E a>n" ,
Therefore
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nll

T

S‘ 'S IAIZ'; x' ga'r(x'-y)] dx'dt' | <£ +§ )_§ IAl:';lea(x"Y)ldx'dt'
R | Isb] Hllyd B

R

c ™7 = copPP'

A

which completeé the proof of ii). An evaluation of the bound Mp can be ob-~

tained from the constants in (9.18) and (9.19).

iii) With a-Jj] =4, n" =0, x' =x, t' =t, we get, using (9.17)

‘S\ l Al:;xl)(;ba(x - y)l

R® i la-]]]

dy 5 Kala-Jijy e+ -a)?

and hence Kis oo-ab.r. and the adjoint of K is 1-ab,r.. We shall prove
now the 2-gemi-regularity of K and its adjoint. By Theorem 6,4 it is

sufficient to verify that

(4 H&K(y.x.nu(y)dy”ﬁ exitiay S 12

for all simple functions u on R® with some constant C independent of u and

that
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(**) K(y,x,t)w(x,t)du(x,t <cC
"%%”“w““$mﬁwr'“h%nﬂw

for all simple functions on {Rann.dp.} with a constant C independent of u,

To prove (¥} observe that for any simple function u,

k
By D/'G (x-y)
w(x,t) = gn Ma)-lIi]a
R

) .
where v,(£) = W;L( £ &) -

Hence, using Parseval equality and {5.18) we get

uly)dy = v 6D .

"l‘z

L)

+
(RPxR® du) S‘ g Jvy(liane.n < L'—l?;—C(n.a-bl)A‘;‘ s 2le- lll)MZ
Rn Rn

Similarly, if w is a simple function on {Rann;dp} and

A x b (x -y)
u(y) -S S t”aj wix, t)dp(x,t)

then
-1(t,€)
~1)
ag) = —drop eﬂf L S
-+,

a+Jel) [/
where Q(&,t) is the Fourier transform of w(x,t) with respect to x, Using
Schwartz' inequality, Parseval equality and (5.18) we get (**) with the same

constant as in (*).

iii) follows now by interpolation (see Theorem 6.5). For 2gp g o,
the p~bound Mp of the transformation is equal to the p'-bound M'p, of the

adjoint transformation and they are both evaluated by

(10. 21i1) M, = M, S /{a Z/P(a-bl)‘l(k+b] ay!
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Proposition 10.3, Let k > 4> 0, and a—-]_]]— >-y. Then the kernel
25076 _(x'-y)
K(x',y,t) = ]J ]’Y , with measure spaces {Rn, dx'} and {Rann, du(y.t)]
t

is p-ab.r., 1< p £ oo,

The proof is completely similar to the one in Proposition 10.2i). We

choose € = %min[(k--y) (a- b]‘-'y-n” p')] and apply the second method with

~ 1
the inner factor A(z) = [G(n b]"'Y‘ e(z")]l/p . The p-bound of the present trans-

" formation is equal to the p' -bound in (10.2i).

"
Proposition 10,4, Let k > vy > 0, k'>—y'>0 a- i - %—Z'yi-'y‘.
k" () -
. At'l;X'At yDJ G (x'-y)
15p g The kernel K{x',t,y,t} = with measure

ley"" Y

spaces {Rnx R®, du(y.t)z , &Rn'an.. dl.i'(X'.t'l)} is p. -ab. r,

Proof. Consider first the case when n" =0, Then by (9.21). K satis~
fies conditions (6.4) and (5.4') with constants A = B. Hence K is l-ab.r.
and o-ab.r. and by interpolation, (Theorem 6.5), it is ab,r. with p-bound & -

A = B given by
(10.4a) For n'=n, M= -":[(k-o/)(k'-v')min(%v'.k-%k'-v')]'l(l+:,lqi.]—.g)-

Consider next n' <n and 1 < p < . We use now the general criterion

of Theorem 6.3 with kernels

KI(Y’t'x"t' = H ’Ylt ] U X’At' x'G 'yp-l-'y'{-e(x -z)l lz"ln /P] t yD(jY) :FE(Z-Y)]dZ.

'. nj=n'fp y) - .

Ky, taxht)) = ¥ Jey)” 7' Sl x'G byt e (x'-z)} |z"]" ]A D§ Gg, d2 y)ldz.
We have put here 8= a=n"fp —v'; € = %60 or = %eo depending on

whether l'Y"‘n"/P'I 2 EO/Z or l.yo_nlypll < EOIZ {so that l-y'_nn 'iflélzeo)
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with € = min(y, v', k-9, k'-v'); the upper or lower sign accompanying € is

chosen depending on whether Je! l < i or ]tll > ]t]

Condition (6.5) is checked immediately. The first inequality in (6,6)

is obtained as follows:

L‘S K(y.t;x.t)}t]n dx' dt! 2.

b

Sn‘&n' IS -n'l ! Gn"p+7‘+e"‘"z)“z"ln !

]S A" % 3 Gblhﬂe" 2)Gg_Jj| - % 'Y)dzldx'dzdt'l

We integrate first with respect to x' applying (9.18) with 8= y'+ €, and then
integrate with respect to z, applying (9.17), and then with respect to Z). We.

end with integrals with re"sipect to t"1 of the form

c S I -a' dt) + C S It} € ]tllj“‘“' dt) < Keo‘4 = A.
kol tyl> bl

We treat similarly the second inequality in (6.6) where in the integral

S.n‘g'n KZ(Y't'x"t'l)ltrndet = S S S‘ S ces dydzldzdt

R' R K R R*R?

we apply (9.17) for integration with respect to z, and (9.19) when integrating
over z, and end again with integrals over ]t] bd lt'] and lt] ]t'] similar to

those above. For the constant B we get the evaluation I{e (n"/p ) For

1. The proof could also be obtained by applying the second method of §6
separately to the two components K' and K' of our kernel K = K'+K' where
K'=K for |t <} and K' =0 for Jty] > .

2, If B- b] -4 = 0 the last integral S. .o ia replaced by A %Y)Gb“_‘y(z-y).
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the bound Mp we obtain thus
]
(10.46)  For n'<n, M, gAVP gh < [min( vy =k =y ]2 E

This evaluation is at first obtained for 1< p < oo, ‘However, since it
is independent of p it is also valid for p =1 or p = oo (one could obtain simi=-

lar evaluations more directly by using (6.4) or (6.4')).

Proposition 10.5. Let teR" be fixed, 0 <f <k, 0 <y<k', a> B+7.

i} The kernel ]t]-BAl:,z Ga(z-x) is ab., -r. for measure spaces (Rn;dx) and

(Rn;dz) with bounds independent of t,

. =B -y K'Yk . _ -
ii) The kernel ]t] ]tll Atl;zAt;z Ga(z-x) is ab, -r. for measure-spaces

(R®;dx) and (Rann;du(z,tl)) with bounds independent of t,

Proof. We show that the kernels are l-ab. -r. and co-ab. -r. by find-
ing evaluations A and B for the corresponding integrals (6.4) and (6.4'). In
case i) we apply (9.17) with h] = 0 by writing K(z,x) = Jt]_BAl;;z GB(z-y) *

. ‘ _ =B Kk - o
Ga_B(y-x) to obtain A and K(z,x) = Ga_B(z-y) * ]tl A-t;x GB(y x) to gbtam B,

The p~bound so obtained is
(10.54) M g Kk-BI for Igpge.

In case ii) we apply (9.21) to obtain A and (9.20) to obtain B. The

p-bound so obtained is

(10. 5i) M, < K [min(B,v.k-B,k - T VP (-1 e -9 for 1< p g oo,

Remark 1, Statements in Propositions 10,1 -~ 10.4 pertaining to

p-ab. regularity of an integral transformation are equivalent to p'-ab. regu- ’
|

larity of the corresponding adjoint transformation. When we refer to such a !
I

statement about the adjoint transformation we will write ""adjoint proposition'

{e.g., adjoint Prop. 10.2).



Remark 2, In the preceding propositions we considered only the mea-

sure du(x,t) or du'(x',t'). In the following sections we will need these propo-

Gont2it)

2n+2f
d;.L',B(x',t')) replacing du(x,t). Whenever the statements pertain to p-ab,regu-

1

sitions often with the measure du,(x,t) = du(x,t) ( or
Hg T, P) L

larity, by virtue of Theorem 6.1, we still have p-ab. regularity with the new

A

measure, with bound MLB) (C(n,ﬁ))"up'Mp or é(C(n,B))-l/p Mp depending
on whether the measure is changed in the domain-space or the range-space.
The only case when we deal with p-s, ~regularity is in Prop. 10.2iii). By
checking directly the proof in this case (es‘pecially for the 2-s. -regularity)

one verifies immediately that p~s. -regularity is maintained with d|_;.ﬁ re=

placing dy, the evaluation of the bound being changed as above,

§11. Inclusions. W: and R%P as spaces of potentiala.

In this section we give a description of inclusions between spaces W: )
Lg, and 7BYP. We also derive some representation formulas for functions
of W: and 78%P which allow us to characterize those spaces as spaces of

Bessel potentials of certain classes of distributions,
It will be convenient to introduce the space

(1L.1) A‘; = [LP(R®) x LP(R®xR", dut glxe..x [LP(RY) x LP(R®x R", d g ]

nmﬂ-l times

n-l

if o is not an integer, o= m+B, m = [@), 0 <B <1, and

(11.1') AP = LP(R") %o x LP(R")
m

n -1
-—n—_-r—- times

if a = m is an integer.



e

T RO e e o i

71.

Elements of Ag will be denoted by {vj, wj} or by {vji if a is an in-
teger, j being a multiindex, 0 < b] <m. The norm in Ag is defined by the

formula
m
= ) 2t
(11.2) ]]vj.wj ng = LZO(T)(B) b;‘ HVJHEP(R“).
= il=1

Clearly, W: is boundedly imbedded in A‘; (with approximate norm
l -]a,p isometrically imbedded), the imbedding being defined by
(1L.3) D B At Dju(x) N
. v; = Dyus wj(x,t) = —-—ltTB— (ueWp).
W: can be therefore be considered as a (closed) subspace of Al; .
Lz will denote the saturéted rel.o‘to-spacé of Bessel potentials of
order aof functions in Lp, i.e. the space of all functions u for which there
exists a function fe Lp(Rn) such that u(x) = Ga % f(x) almost everywhere.

The standard norm of u is defined by

(11.4) Jul,,, = llfll‘Lp( &)

The space L2 was investigated by Calderon [ 6 ]. An equivalent
definition of LE as a space of distributions is that LE is the space of tem~

pered distributions u whose inverse potential of order a, G_au, is in Lp. 1.

The space Lg, for p < oo, will be considered as an imperfect com-

pletion of the space CSO with norm given by
‘ — Ay
"una;P - "GZm-a * (1 A) u"Lp !

where m is an integer 2 af2. For p =, the imperfect completion leads
to the space L(:<; this is the space of all bounded functions u such that G_au
is continuous in KU () and vanishes at ., Obviously La‘;’(C Lgo. For p =1

>
we introduce also Lla as the space of tempered distributions u such that C'-a“

1 qau is given in terms of Fourier transforms by (G_au)A = (1+ ]g]z)alza .
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is a Borel measure of finite absolute mass; we put H“u‘a.l = ]Q_au](lf‘).
Obviously again LlaC LI:C LIB for 0 B <a.

The perfect completions corresponding to spaces Lz will be introduced
in 8§13 and denoted P*'P,

As concerns inclusions between spaces W: and L‘; we have the follow-

ing theorem:

Theorem 11,1 1)5 a _is an integer then I.}; = W: for 1 <p <o,

il) If a is not an integer then L};DWS for 1<pg2 and IJ;CWI‘: ‘&"Zépé

!
. iil) If a'>a>0, then WY CIP and 1P, C W2%.
—_— — 'p @ — a P
Proof., i) Let o =m be an integer, If uel.Pm. 1< p < oo, then

u= Gm# f, feIP(K") and therefore by (5.7) and (6.13) the distribution deri-
vatives Dju, l]l S m, arein LP(R") and there is a constant C independent
of u such that .]u.]m'p gCHf”Lp = C]]uum,p. Crc;nveraely if ue W;n then
(5.30) gives for £ =G _u the expression f = ()(-If £ D.[G_ *D,u]
-m 1m0 1 E Dol
in sense of distributions and therefore by (5.7) and (6.13), fe Lp(Rn) and there

is a constant C independent of u such that ]If" p < C]u]m P’
L ’

i) Let 1<p<2 a=m+B, m=[a], 0<B <1, and uec8°. Then
G_au is clearly defined pointwise by formula (5.28), We write this formula

in the form
x o A, O¥G (2-%)

= m - tx" ) Ta ‘

s G a= ) (* )bi_‘[( 1! D,G, * vj(2)+‘§{n‘§{n Tyt

1 =0
with vj. wJ as in (ﬂ.3). G—a can then be interpreted as the result of a trans-
formation of an element of Ai. In view of the propositions 10.1 (for n'= n) ,
the adjoint Prop. 10.2iii) and Remark 2, §10, there is a constant C indepen-
dent of u such that "G-a“an s Cl“la,p for 1<pga.
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Let 2<p L0 and u= Ga* f, fe LP, Then by Prop. 10.1, Djuf LP,

]j] <m, and there is a constant C independent of u such that "D.u" <
I "" AJ.Dju(X) SIS #
f . On the other hand the expression w, = is the result of

L i

J
the integral tran<formation of Prop, 10.2 (n =n') applied to f (with measure
dy replaced by duB) and by Prop. 10.2 and Remark 2, §10, there is a constant

C independent of u such that Hw”

S Cllf} . This completes
JLAR < R", diig) " "LP

the proof of ii).

- |

ili) Let ue W: . Since W: with increasing a form a decreasing
sequence of spaces we may assume without loss of generality that o' is not
an integer, a' = m'+8', m' =[a'], 0 <B'< 1. Then by (5.28), u =G *f{

where
m

(11.6) £(z) = Z (T) [('I)IDjGZa'-a* Vj(z) +
=0 if=t
A %, (z-
S‘ S‘ t;x ) 'Za _ot%=%) w.(x,t)duﬁ,(x.t)] .
Rn Rn ]t]B J

v. and wj as in (11.3) (with B' instead of B). By virtue of Propositions 10.1
(with n' =n), 10,2 i) (adjoint, with n' = n) and Remark 2, §10, formula (11.6)
is valid pointwise almost everywhere and fe LP,

On the ot'her hand, if ue Lz, , U Ga' * f, fe LP, then by Proposition
10.1, Djue LP, lJ] < o', and iii) is proved for a integer. I a is not an in-

AtD.u(x)
teger, o mm+p, then the expression —-IJJB-— for bl __<__m belongs to

LP(Rann,duB) by Proposition 10,2i) (with n' = n) and Remark 2,§10, with

norm bounded by C]Ifu p with C independent of f.
L
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Remark. It can be proved by examples that the inclusions in ii)
are proper for p + 2. It is well known that Wg and Li coinci&e for every
a> 0 (c.f.[2]). |

We now proceed to prove the following theorem.,

Theorem 1.2, If a > vy and both « and a-y are not integers, then

W: = G7W3'7. 1< p g o More explictly, the space W: consists of all

functions u of the form u = G‘Y * v, VE W:-7, and there are constants Cl N

C, >0, independent of u such that

(1.7) CiMacyp Shlop s Sy,

Proof. Let uew:. By propositions 10,2) and the last remark of §10,
the inversion formula (5.28) is valid pointwise almost everywhere if y < a
and o is not an integer. Let a=m+f8, m=[a], 0>8>1, a-y=m'+p',

=[a-v]), 0 <B'< 1. Then for [j'| gm',

) ‘
(1.8) D;,G_ u(z) = (-1)“20( j ); [S ﬂ}‘uJ G o(2-2)V, () dx
l =

A

A, _g® (z-x)
tx juj' Za- ‘
+§ n W i ldagle]
R R |

¢, DyiG_ul2) o - &, B9 G, (zex)
(11.9) J! g u(z = (- 1)le Z(m B t1;2 jUj BZ'O'-Y zox vj(x) dx
}‘ll 1=0 =2 R" bl

> hd

(z=x)
t H t x jUJ Za-'y ‘
fnS‘ 1 HB ]Br wj(x,t) de(x,t)] )

whe.re vj, wj have a meaning as in formula (11.3).
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Noticing that dp.B(x ) £ CT—B) di(x,t) and recalling that W
B(1-B) for 0 < B <1, using Propositions 10,1, 10.2'i) adjoint 10,2 _11). 10,4 and

a-
Remark 2, §10, we get G_ u€W 7 and lG ula Clula.p with
1 1
C g Kfmin(8.1-8,8',1-g" 808 P11 -y 1 L
Conversely, if uew:"Y then Gyu is given pointwise almost every-
where by the formula

Gyv(z) = b; [ nlijza (z-x)D v(x)dx

1=0

A, O ae 12X} AD, v(x)
t;x ) 2Q Y
+ S. S‘ l ]Bl d“Bl(xlt)]

Using the same reasoning as above we conclude that G_ve Wg and
|G,y p & GVl with C 5 K {min(B.1-5.p1-8)[80-A1 P [ 1-p) P} -1,

This completes the proof,

In particular it follows from Theorem 11,2 that W;M'B = Gmwf for
0 < B <1 and m integer, and there is a constant C > 0 such that C-IM&p s
levl =<__ Clle'p. It follows from the estimates indicated in the proof
that the cc;nstant C increases unboundedly as B —» 0 or f—»1, For

1 < p < @, this result can be improved by using singular integrals. This is

done by means of the following proposition.

Proposition A. If K(x-y) is a kernel such that for fe LP the integral

Kf(x) = S;(nx(x-y)f(y)dy (possibly understood as singular integral) exists

pointwise almost everywhere and there is a constant C independent of f

such that
(11.10) || ks HLP <C ﬂf]le

then for every ve WpB, 0<fB<1, Kve Wf and ]‘K‘v leP‘ s Clle,P with the
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same constant C as in (11.10).

The proof follows immediately if we notice that Ath = KAtf and that

) t
oB o= BulP, + | ot
P LP 0 C(n,B)GZn+B(0)]t

G
dt.

p
[F¥Pp 121 LP

We can now state the partial imporovement of Theorem 11.2:

Theorem 11.2'\ There exists a constant dependiig only on p,n, dt_h_e_

positive integer m and an upper bound of a such that for 1 <p <

vl clv]

a,p = leVIa+m,p s a,p

Proof, Obviously it is enough to consider the case 0 <a <1, m =1,

Put u= Gv, '5% u = -gqxl—;- G, * v. By (5.30) with m =1, we have

v(z) = (G, *u)(z) - Z (3%— G, * ;’_“x;)(z) .
k=1 k

As in Theorem 11.1, i), this gives our present theorem for a = 0 and,
by Prop. A, also for 0 g a <1 with the same constant C. We use then

Theorem 8.1 ii) to extend it to a =1,

~
The next theorem is a counterpart of Theorem 11,2 for spaces HUP,

In its proof we will use the following obvious propositions

Proposition B, Consider two measure-spaces (X,du), (Y,dv) and a

kernel K(x,y) p-ab. -r. with p-bound Mp for ]K(x,y)l. Let K'(x,y) =

A(x,y)K(x,y) with ].A(x,y)l < C = const. for all x,y. Then K' is p-ab. -r.

with p~bound < CMP.

Proposition C., Consider three measure-spaces (X,&u). (Y,dv), (T, dw),
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and a kernel K(x,y,t), x€X, yeY, te T measurable in the product space

XxYx T. Suppose that for each fixed t, K(x,y,t) is p-ab, -r, with p-bound

for ]K(x,y.t)l uniformly bounded by M. Then, if the total mass w( T) is

finite, the kernel yx(x,y,t)dw(t) is p. -ab, -r. with p-bound < Muw (T).

Theorem 11.3. £ a>y>0, 1<p <o, then Ga—'yby'p = %a’.p.
More explicitly, %“-P is the space of all functions u of the form u = Ga-'yv
with ve %’Y.p and there exist constants C, C'> 0 depending on o, v, k, k'

(k, k' are integer, k' > 4, k > a) such that

(11.11) CIvL e £ 16, Vo 5 VL o

Proof. By Lemma 4,1 we may assume without loss of generality that

k = [a] + 4 and we may choose then k' so that k-k' 2 a-y+1 and k' > y+1l.

If ve737’P then by Young's inequality we get G veLP and lG vl =
a-y a-y i p

k~k' k!
lv" . Furthermore, for every t, A G v = A G. %A, v.
, LP t a-v t a-vy t

Applying (9.17) (with Jjj =0) we get S‘ Itl oz+'y]Al: k Ga_.y(x)]dx < X, and hence,
n
by Young's inequality R

S ™ e o,y P o § ™ XL S o

which achieves the proof of the second inequality in (11.11) with C'< X .
Putnow u=G_ v, Hence v=G u. We use the formula (5.22)
a-y y-a

which at first we know only to be valid in sense of distributions {(we replace
B by a and o by a-4). By shifting a suitable number of differences from

G to u(or vice-versa) in the convolutions we can rewrite the formula

aty
(still in sense of distributions) as follows



(aL12) G, _ulz) =

Zk(-!kl) Gans20t)
t,(£-k)t;t " 2n+2a
[ Z ()(,.)(-u“Sf 7z
L 4'=0 l
t+L'sk
Zk-l-l
G (t)
K t (2-k)t;t ~2n+2a 142 -k
z ( " )S g Mn+Za At z-1't;z
1 Il—
4+'>k
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1+L

By gtz G (2-X)ulx) dxdt

a+7(z x)A « 3% dxdt} '

We have here a linear combination with constant coefficients of formal

integral transformations. Our aim is to show that when ]u]a p.k < o each
] L]

of these transforms is in LP(R™;dz) and when we apply ltlr'y&:'_z to them
l.

we obtain functions in Lp(Rn an;du(z.tl)).

Consider first the transforms in (11.12) in the first sum when £ + ' sk,

Their kernels can be written in the form

(11.13) g K(x, 2,t) dw(t)
with
K(x,2,t) = A‘““ 2 Ggi =)
- -n-2a 2k-1 L
du(t) = i At (1-k)t;t F2nt2a

Ko 2t) = R St =)

-n-2a+B Zk-l L

(t) de

du(t) = || B¢ (£-k)t;t Fanszqlt)

B = min(t + £'-1, a)

J

for £+ <1 .

for 25 L+ S k

By (2.11) andin view of the exponential decrease at o of C'Zn+2a , dw(t)

has a finite total mass < 4. The kernels ]K(x.z,t)l are p-ab, -r. for

(Rn;dx) and (Rn;dz) by virtue of Prop. 10.1 and 10,5i) with bounds S/ in-
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dependent of t. Furthermore, the kernels ]tll-7 ]Al:le{(x,z,t)] are p-ab.-r.
by Prop. 10.2 i) and 10,5 ii) for (R*;dx) and (Rann;du(‘z.tl)) with bounds in-
dependent of t. Hence, by Proposition C above, the transforms in the first

i .
sum in (11,2) have norms ] l'y,P.k' bounded by cﬂuuLp.

Consider now the second sum in (11.2) where £+ S k+l. The corres-

ponding transforms can be written

(11.14) 5‘ y A(t) K(x,t, 2) w(x,t) d(x,t)
R* R*

where we put

wiet) = jTO 4 utx-g)

ol +£-K)
Kiotz) = Jf| © A G, amx)
_a(2k-£-1')
Alt) = H Ailf(}l-;l)‘t;t GZn-l-Za&) '

We have here Aft) S X (by (2.11)), K(x,t,z) is p-ab. -r, for (Rann;dp.(x,t)
and (R“, dz) (by adjoint Prop,10.2 i}))for n'=n and b] = 0) and ]tll-‘YAl:‘;zK(x,z,t)
is p-ab, -r, for (R*xR™;du(x,t)) and (Rann;du(z.tl)) (by Prop. 10.4 vlvith '
n'= n and bl = (), By Proposition B, this finishes the proof of the first in-
equality in (11,11), By checking on the bounds in all the propositions used in

L
our proof we find the following evaluations for the constants C and C' in (11.11):

oo .,

7N

P

A

(11.15) o < Hvy? c X for 1

Theorem 1l.4. If o is not an integer then 0P = W: » 1< p g oo

If o is an integer then %a,pc W:f for 1gpg2 and W:C ﬁa’p_f_g 2<pgoo.

1. On the assumption that k and k' are chosen as they were at the beginning
of the proof. For other choices of k and k' the evaluations should be changed

by using Lemma 4.1.
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Proof. The first part follows directly from Theoremns 11,2 and 11.3
and the remark that for 0 <8 <1, 73 PP = wf » 1§ p g, To prove the
second part, observe that if ue %a.p' a-integer, ther u = C'a-efe'fe ebe'p,
0 < €< 1, and the norms lula.p,k and ]fe Ie P are equivalent. By the
reproducing formula (5.24) (with B =€) and Propositions 10.1, 10,2 i) adjoint,

we also have pointwise a.e..,

S S By, Copex-Y) AL Ly)

R S e et

wte) = { Gy ben ey +
R

Therefore derivatives Dju. lil € « are given by the formula
A,89 . (x-y) AL (y)
D.u(x) = 6xb (x-y) £_(y) .'.S' S' t j “ate te
J “Jdpn Jd ate € adn 3
R R" R

tel €

dl-le()’at)-

The right-hand side of the last expression can be interpreted as the

sum of results of two integral transformations applied to f€ and W, =
Af (y)
Kl

first transformation is absolutely regular for bl < a, the second is abso-

respectively. By Propositions 10.1, 10.2 i) adjoint, and 10.2 iii), the

lutely regular for b] <a and p-s.r., lgpg2if b] =a. Thus %a.pc W;,

if a is an integer and 15 p £ 2.

To prove the coposite inclusion for 2 £ p § ®, we remark that if ue W:
then by (5.29) (with m =a) we have, at first in sense of distributions

u= C}m_€ * fe where

. a L]
(11.16) £y = Z(;’) Z S ﬂ;)Ga+€(y~z)Dju(z) ds .

1=0 |Jjj=¢ K

Applying Prop. 10.1 we prove that thisis a‘bonra fideintegral representation,
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that fe € LP and is given by (11.16) a.e.. By Theorem 11.3 it is sufficient to

prove that £€ € —I%frP, 2 <pg o Weknow already that f€ eLP; on the other

A f
hand €

] l can be written as a linear combination of terms wj(y,t) given
t
by the formula d |
A, D¥g (y-2z)
w.(yst) =§ Ly J ate D.u(z)dz .
J n | € ;o

K

By Proposition 10.2, for b] < a, wj(y,t)‘ is the result of an absolutely

regular integral transformation applied to Dju; for ljl =aand 2Sps®

it is the result of a p-s, r, transformation. Hence wje Lp(Rann, dp) which

completes the proof.

~ NP
.. 0 .
If for fixed ky > @, > 0 we choose a norm nuﬂ anp P 19 equi-

0’ ~
and then define Huu for ue73"P

valent to ]u] = ]]G uu
a ﬁa,p a-aq zsao,p

0'Pkg

a2 0, this norm, by Theorem 11,3 will be equivalent to'lu]a p.k for a > 0.

If we restrict the choice of “u" AP by the additional requirement that for

0)

73 .
p = 2 it coincides with lula = ]ula 2 we shall call the resulting norm,
0 0’

"u“ﬁa,p a standard norm on 150.1’, The simplest such choices of "uﬂfg,"O'p

seem to be the two following norms: the first, for g = 1, leads to the

standard norm:
11.17 P = llg, ul}® + _I‘%!z-n/_Lg ] 2Pl A%a u(x)]|?_at,

the second, for a, =]/Z, defined by "u]] V2,p = l“ll/Z P’ leads to
ﬁ L H

2-lr n+1/2)

: P e P
17y | “"Ba.p = "C'lﬂ-a“"Lp + -

S‘nltl-n-p/zGZn«i-l(t) “ Atq/l-au Hzp dt.
R
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Recapitulating, we can state

Theorem 11.5. Consider ﬁa.p with a standard norm for a > 0. The

potential operator G‘Y is then an isometric isomotphism of ,;"}a.p onto

%aﬂ.p. For p =2, ﬁa'z = Wg" = 1"2 , with equality of standard norms in

all these spaces.

Remark, For any norm [ul p a8 defined above, and function u(y)
we can consider the function ¢(a) = n‘“"‘Ba.p’ (= o 1! u¢ r’;q'P) for a2 0.
Obviously @¢(a) < o implies ¢(a') < g for a‘< a. It can be proved without
much difficulty that 12 for all a, &(a) is continﬁéhi M the ,!'bﬁ't_t;‘ 2t if ¢(a)< o,
for 0 ¢ a g a' then & is continuous on this 1nt.dﬂl"l\_i’?l":1‘.;“..u' we tgkﬂ for qu”mp
the norm (11.20) or (11.20'), then &(a) is non-deéreasing.
Consider the inverse potential operatar G o applied to ,‘;a.p. This
gives a space of distributions c_aﬁ“"’) which, by Theorem 11.3, is indepen-

dent of o, We will dencte this space by BQ'P « Hence
(11.18) | AP = g (B for a0,
Since for 0 < B <1, 73 P = w‘f, we obtain by Theorem L) - in view
of the fact that G_ (1F) = LP,
(11.19)l BOPCIP for 1gpg2 B"P DIP for 2gpgm.
As a consequence, we have also

m.20) R PCLP for 1gp g2 AB*PDOLY for 2gpgw.
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812. A projection formula and conjugate spaces.

3

In this section we shall need some results of the theory of pairfngs and
associated norms (c.f.[4]). Let A and B be complex Banach spaces and
< v,w > be a bilinear hermitian complex valued form on AxB (i,e. linear
in v, antilinear in w). The system [A,B,< , >] is called a pairing, A
pairing is proper if vgw> = 0 for all weB implies Vo = 0 and <v,wp> = 0
for all ve A implies wy = 0. The norms in A and B are admissible with
respect to the pairing [A,B,< , >] if <v,w > is a bounded functional on A
for every fixed we B and a bounded functional on B for every fixed veA.

Let [A,B,< , >] be a proper pairing and norms in A and B be admissible,

The correspondence v — f(v) =<v,w> is a canonical linear continu-
ous mapping A — B* where B* is the anticonjugate of B, i.e. the space

of antilinear continuous functionals on B. Similarly, w —» <v,w> is the

"canonical mapping of B into A*¥., We say that in this pairing B is canoni-

cally isomorphic with A* if every linear functional @ on A can be represen-

ted in the form ¢(v) = <v,wq)> with some fixed w¥eB (since the pairing is
proper this w® is clearly unique). A bounded operator P*:B —B is called ad-
joint of a bounded operator P:A — A with respect to the pairing [A,B,< , >]

if < Pv,w > =< v,P*w> for all ve A and weB.

The adjoint may not exist for some operators in some pairings. In
the pairing [A,B,< , >] every bounded operator on A will possess an adjoint

if and only if B is canonically isomorphic to A*,

If Ao is a closed subspace of a Banach space A then we say that an
operator P:A — Ao is a projection of A onto Ao if P is bounded, P(A) =

A, and F’Z =P,

0
If a projection P of A onto A0 has an adjoint P* then P* is also a

projection.
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Theorem 12.1. Let [A,B, < , >] be a proper pairing of Banach

aEaces.Ao,Bo be closed subspaces of A and B, and P,P* be adjoint pro-

jections of A onto A, and B onto B, respectively, Then

i) The pairing [A;,B;, < , >] is proper.

il) If B is canonically isomorphic with the conjugate space of A (in

the pairing [A,B,< , >]) then B0 is canonically isomorphic with the con-

jugate space of A, (in the pairing [AO’BO’ <, >]).

Proof, i) Let vjeAj and < vy, P*w> =0 for all weB. Then by de-

0’
finition < vo‘,P*w >=< on,w > = {vo,w> =0 for all weB and
since the pairing is proper, Vo = 0. The proof is similar for Wo€ BO.

ii) Let ¢ be any bounded linear functional on AO. By the
Hahn-Banach theorem ¢ can be extended to some bounded linear functional
3; on A. By assumption there is an element w?eB such that 'c?)(v) = <v,w?>

for all veA. Hence for ve AO, Plv) = < v,wq) > =< Pv,wcP >=< v,P"‘wcp > =

< v.wcg >, wg =P wPe BO‘ By i) w(g is unique,

We proceed now to apply Theorem 12.1 to the case when A = Az »
'
=A5' (c.f. 'Qll). For {vj,wj} eA[; and {v'j,w-'i‘}eA[; and for {\:i‘EAI;
and {v'jieA% , if a is an integer, the bilinear form < , > is defined by

the formulas

020) <fvymi, {viwy} >, = Z( ); (v

R

for a not integer, m = [a], B = a-[a], and
(12.1') | <AvitIvyio, = Z ZS v;x) VG dx

1=0jj|=1
if @ is an integer a =m.
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The pairing
P AP
(12.2) [Aa’Aa'< . > ]

!
is clearly proper, the norms in Az and Ag are admissible and for 1 Sp<o

)
A‘; is in this pairing canonically isomorphic to the conjugate space of AF; .

As indicated in 811, for every p, 15p S o, the space W: with norm

] .] can be isometrically imbedded in the space Ap » the imbedding E a,p :

Wp — Ap being given by the formulas

D,
= = tJ o j = = - .
(12.3) vj(X) —Dju(x), “{i(x.t) = ]_F]B_ » ue W jl £m=[a], B=a-[a],
if o is not an integer, and
(12.3") vjx) =Dju(x) , ue W li| <m,
if @ is an integer, a = m.

Consider now, for {v.,w.‘eAp or for sv.}eAE:n if a=m is an integer,

the transformation T defined by the formula

1z.4) T, {v.wj() = i‘( ﬂ"’ G o= v ()
il=

1=0
J§ At'x';:lé' T wytxtidpge)

for a not an integer, and
m
(12.4") Tppl¥Hz) = Z () g ﬁ}"GZm(z-x) v;(x) dx
1=0 bf_'l R
for a integer, o =m,

If ue W: then the reproducing formulas (5.27), (5.29) and Propositions
10.1 and 10.2 give

(12.5) Ta.pEa,pu(x) = u(x) almost everywhere,
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Using propositions 10.1, 10,2, and 10.4 we conclude that for a not an
, . P .
integer and 1 < p <, Ta,pivj'wj} € w’; if {vj.wj}eAa and there is a con-

stant C independent of {vj,wj} such that

P
(12.6) lTa,p{vj’wj}-]a,p <cl {vj.wj} "a for 1gp Soo.

On the other hand if a is an integer, a = m, then from (5.7) and (6.,13) it
follows that {vj} € Al:n implies Tm,p {vj e W;n and there is a constant C

independent of {vj] such that

12,6 T < . f 1<p <oo.
( ) I m.pvj-'m,p = CquuAp lor <p <@
m
We easily verify that

* _
(12.7) (Ea,p Ta,p) = Ea,p' Ta.p'

- P AP'
in the pairing [Aa' N,< ., 3 ).

Taking into account (12.5), (12.6), (12.6') and (12.7) we get

Theorem 12.2. If either o is not an integer and 1< pg @, or « is an

integer and 1< p< oo, then the operator Pa p =E T isa projection of

a,p a,p

13 a L. )
Aa onto the subspace Ea,p(wp). In the pairing (12.2), Pa,p' is the adjoint

P
Pairing (12.2) induces a corresponding pairing of the spaces W: and Wpa.'.

a 4
(12.8) [wp, wp..( v )]
with
(12.9) (u,v)a = <Ea.pu' Ea,p' v

£ we, .
101‘ ue€ P Vi\f,

Hence, using Theorems 12.1 and 12.2, we get
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THEOREM12.3 If either a is not an integer and 1 < p < o0, or «a is

an integer and 1 < p <, then in the pairing (12.8) the space W:; is canoni-

cally isomorphic to the conjugate space of W:

Similar results can be obtained for spaces 75“"’. To obtain an iso-
morphism of %a,p' with ( %Q.P)* we have to choose a suitable pairing
(the isomorphism obviously depends on the pairing). The quickest way is to
use the isomorphism G-a+]/2 between ,,"'ba,p and WI/Z (see theorems 11.4
and 11.5) and take advantage of the pairing [Wg/z. W:)/,Z, ) )1/2] (see (12.8)

and (12.9)). We obtain thus the pairing

(12.10) [R*P, B*P, (G g2 G qay2¥ye]

and the theorem

~

]
THEOREM 12.4. Forl <p < oo, B*P s canonically isomorphic to

(’7‘50’[))* in pairing (12.10).

Remark. In analogy with our procedure in the case of spaces W: it
would seem more natural to use the following construction for spaces ,%a,p.
Put £LP = Lp(Rn) X Lp(K“an, dy). For {v,w} e XLP define “‘{v,w}ﬂpp =

e P

uvﬂzp-i- Hw"p . For a> 0, the space 75%P Wwith norm ] la’.p,k'

LP(R* xR, 1)
k > a, is then isometrically imbedded in £ P by the mapping Ec(rl.)p
n —s {u, ]t]-a Alzu] .

The spaces AP and ofap' are in natural pairing with scalar product
< {viw}, {v\,w'} > =S‘v v'dx + S'S\w w'du(x,t). We would expect now to
find suitable adjoint projections of ZP onto Eg')p(%a'p) and of on' onto
Efxl.)p,(rg""")‘. Thesel will be obtained if we get suitable reproducing for-

mulas for the 73%P which would play in the present case the same role
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as the formulas (5.27) and (5.29) played in the case of spaces W: when we
constructed the transformations T and the projections E T . Such
a,p a,p a,p
reproducing formulas exist; they require the use of the reproducing {or
pseudo-reproducing) kernel for the space 7‘3"ar,2 with the norm ] Ia 2.k
(for W: we used the reproducing kernel Gza(x-y) of the space Wg with
norm ] 10 2 this space being essentially the space Pa). The required

reproducing kernel is the inverse Fourier transform of (zu)'"/2(1+c|§| Za)-l

-kt 2k 2a
with C = 2—5— C(n,a) Al, -k;slsl . The reason why we did not use this
approach is that we would need many properties of this kernel which are not

readily available,

CHAPTER III

Perfect completion of F%P and ®*P,

v
§13. The spaces P®P and B*P

In this section we prove the existence of perfect functional completions

v
- of 2%P and 13%P which will be denoted P¥'P and BT'P., We give also a

description of the exceptional sets of these classes and differentiability prop-

erties (in the ordinary sense) of functions in these classes.

We remind the reader that Z%P and B¥P are formed by functions

Te o) L ‘ .
in C0 with norms lula,p or Iula.p,k and their imperfect completions

(rel.‘OI-o) are W: and %a.p respectively. We also consider the class CO

Qo

with the norm llu]la p 38 defined in LE . We define its perfect completion,

which will be denoted P¥'P (LI; is its imperfect completion rel.dlo).
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Since for a non-integer the norm in W: is equivalent to the one in

';vsa,p (see Theorem 11.4) we will have
v
(13.1) BYP = p¥P for a non-integer.

Since for integer m and 1 < p < @ the norm in"‘Wpm is equivalent to

the one in L‘:n (see Theorem ll.1) we will have
v
{13.2) p™P = PP for integer m and 1< p < oo,

It is therefore enough to prove the existence of B*P and P*P in
v
order to have P%*'P except when a is an integer and p = 1. We will show

m,l

v
that Pl’1 exists, but the problem of existence of P for m integer >1

remains open.

For p = oo all our incomplete spaces are proper functional spaces
and, as mentioned before, have proper functional completions denoted

a, < Yo, 0< a, o< . . Ya, ) .
P, P and B contained in P®*®, P¥® and B¥® respectively.

The exceptional classes for P*P and B¥P will be denoted oL"'P

and a_&a,p respectively., Since for 0 < a < a, < a3 we have Lp C‘/b CI.P
aj

(see Theorem 11.1iii})) the corresponding norms, on C0 satisfy

u na p ] la pk < “ n with positive constants c,c'. Hence
a,,p P P a,,p a,,p aq4,p
(13.3) pl’Pyp%2 :)P3 and 01 Yt o3
E}’_ 0 s o < a, < a; .
Since we will prove the existence of 1\51’1, the exceptional class of which
v
will be denoted Olll we have also
a,l .1 ay, a,,l1
(13.3") pliopllyp2t | al 3'“3012

525_ 0_5_‘01 <l<a2.
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The existence of f,m,l for m an integer > 1 not being proved as yet,
we will use an "'almost perfect' completion of ?m'l which we will denote
here (improperly!) f,m,l and which will have an exceptional class given by

(13.4) a™l = N gl

a<m

This class is much smaller than 010. The existence of a completion
of ,},m,l rel. O\Zm'l is assured by the fact that there exists a completion
of ’ym'l rel, dta'l for every a <m 1‘, hence also rel. Ovtm'l (see Prop.
6,54 of [1]).

We can therefore write, extending (13.3'),

1
a,l a,,l a,,l ¥ m,l @y

f_or m an integer and 0 ) <m<a,.

v
To simplify some statements we will use the notation 0L%'? for the
v v
exceptional class of P%P even in cases when P®P coincides with PP
v X
or B¥P respectively. (However, PP will be considered with its own

)

standard norm ] ]a p*

We t~u1:n now to the proof of existence of pa,p’ BYP and Pl .
We will notice first that in all our imperfect completions L‘;, féa,p , and
W:, if a function u(x) belongs to one of them, then so do all regularizations
up = u* e with some fixed regularizing function e and up converges
strongly to u in the corresponding norm. Furthermore for a function

13 Cgo such that ¢(x) =1 when ]xl <1l @lox) up (x) belongs to the same

space and converges in norm to up (x) when o\ 0. It follows that we can

1. This follows from the fact that there exists a completion rel. 01,0 ,
namely Wlm , and that there exists a completion of CSD with the weaker

norm llullal rel, ‘”_a,lc 0y
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choose pk\ 0 and O'k\ 0 such that (p((ka)u (x) converge in the space
to u(x). Moreover, if u(x) is continuous CP‘(Uk x) up {x) will converge
k

pointwise everywhere to u(x).

~

To abbreviate, we will denote by # any of the imperfect comple-
tions LE; , T3P | and W: and by H " the corresponding norm, What

has been said above implies

1) A continuous function belonging to < must belong to any func-

tional completion of Cg) with norm ]l “
We have furthermore

2) If for each u(x)e F the function u'(x) = ]‘u(x)] also belongs to #

and “u'u < "uﬂ 1. then Cgo with norm H " has a perfect functional

completion rel. to an exceptional class J formed by sets A for which

there exists an increasing Cauchy sequence of positive continuous functions

f € & suchthat f (x) # oo for xe A.

Proof. By Theorem 1.2 the class “# of continuous functions be-
longing to '; has the same functional completions as Cgo. Since ‘F has
the strong majoration property there exists a common perfect completion
of Cgo and F . By the theory reviewed in §1 the exceptional sets A for
this completion are those of capacity CI(A) = 0. Since the sets of the
class Of are obviously exceptional for any functional completion it remains

to show that if cl(A) = 0 then Ae0f . In fact, CI(A) = 0 means that for

every k there exist sets A(rl:) and functions fflk)e F such that

AC U A s B9 < 2% ana ) 21 for xeal),
n=l n=l1

1. This is a special form of strong majoration property.
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n n
The sequence of functions fn(x) = Zz z ]fi(k)(x)] shows that Aeof.
1 k=1

i=

‘ v
Theorem 13.1. The perfect completions B¥'P for 0 <a<1 and P¥P

. v
for 0 <a gl exist and their exceptional classes &P and AP are

determined as in Prop, 2).

For B»%P, a<1, we can take the norm ]u]a bl and the condition
in Prop. 2} is obviously satisfied since for u'(x) = Iu(x)], lAtu'(x)l 2
lAtu(x)l. The only remaining case of W; is settled by noticing that if u(x)

is absolutely continuous in any variable % onan interval, so is ]u(x)] and

_ 19u(x .
= l-a(—) ] almost everywhere on the interval,

*k

\ 4
Remark 1. The exceptional class 01-1'1 was investigated by W.,H.

|’08=7.: |t

Fleming [8] who proved that it is the class of sets of (n-1)-dimensional

Hausdorff measure 0,

We will need the following mean-value theorems for Bessel potentials,
similar to Frostman's theorems for Riesz potentials; the theorems were

proved in [2].
For any g(x) > 0, ge Lioc we will congider the function
at) = G0 = { G ey sty)ay
as defined everywhere by the integral - infinite when the integral is infinite.

Mean Value Theorems. There exists a constant C depending only on

a and n such that for each sphere S(x,r), r g 1,

) ]’S'(;Tﬂg(x.ci‘;(z’)') dy g CGa(Z-X) for every z,
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T ~ g G,g(y)dy g CG,g(x) for every x when geL] _
5(x,x) and g 2 0.
. 1 1
iii) lim ]-s—(——)—l‘s‘ G gly)dy = G g(x) for every x when geL
X,r a a loc
r 0 S(x,x)

and g > O,

. . . 1
iv) lim (e * G g)(x) = lim G x) = G g(x) for every x when L
)p\o(" 28) () g o8, ) = Gaalx) y ge Ly o

and g > 0 where e is any regmanzl'ng 1unction,

Our next propostion will settle the question of existence of P*P and

B*P in all the remaining cases.

3) Consider two of our imperfect completions ‘?~‘ ‘and 7’1 such that

for some a > 0, G (¥, = F and C'|t]; < |G f] g Clf], for every

fe ’31 with a constant C > 0. Suppose further that 7‘1 satisfies the global

majoration propertyinthe form

(*) For every fe fjl there exists f'e ?-1 such that f'(x) 2 ]f(x)] a.e, and

e "1 < M"f"l with M independent on f.

Then: 1°. ’.-;' has property (*); Z“.Cgo in the norm ﬂ ﬂ of “¥ has

a perfect functional completion 3 rel. &+ where (o is the class of sets A

for which there exists a function ge 'Stl » 8 2 0 with Gag(x) = oo for xe€A;

3°, "F is formed by all functions defined exc. (¢ by the integrals

SGa(x-y)f(y) dy with fe¥ .

Proof. 1° For ue’i‘: take fe Gzl with u = G,f, then ' by (%)

and put u' = Gaf'. Obviously u' = ]u] and Ju'l| S;Mczllu".‘
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2°, We show first that Of is o -additive. If A = UA.k. Akem
and - is the corresponding function, then g = Z ngﬂgk“ilgk corres-
ponds to A, Next we show that every Aelf must be an exceptional set
for any completion of Cgo in the norm of é . To this effect consider the
function ge :;l , 820, Gag(x) = o for xeA. As before, we can find
a sec}'uence of functions cp((rk x)(epk* Gag)e Cgo which converge in norm

of ¥ to Gag. By Mean-Value Theorem iv) these functions converge point-

wise to Gag(x) = 00 for xeA.

To finish the proof of 2° and 3° we remark that each u(x) =§Ga(x-y)f(y)dy
in ’5_‘ is finite exc. Ot , namely outside of the set A where S‘Ga(x-y)f‘(y)dy &= 00
(f' corresponds to f by (*)). It follows that in each equivalence class rel, OI_O
of '7 there exists one and only one equivalence class of F rel.d .
Taking Sf- with the norm of F we see that F is a functional class C ':7
forming a Banach space isometrically isomorphic to ’:7 . Since C0 C 7 L.

~

it remains only to show that F is a functional space rel. 0t . In fact, if

{un} C¥# and nun" —» 0 we choose unk so that Z "unkl] <o, If
7 = ' * =
fnke 7‘1 with unk Gaffnk R fnk corresponds to fnk by (*¥) and g

Et"n then u (x) = 0 outside of the set A where Gag(x) =
k k :

Theorem 13.2. The perfect completions PP and B®P exist for

alla > 0 and p > 1. The exceptional classes a®P :nd (TP are

determined as in Prop. 3, 2° by taking in case of P?P the isomorphism

G f - I}:z and in case of B®P the isomorphism C'a-'y I o R £ %

with any 7, 0 < v <a.

1. The simplest way to see this is to write for ue C°° £ =G P

2! (1- A) u where A is the Laplacian, f an integer >a/2 ; then f

is continuous and Gaf defines u everywhere.
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A comment should be made in case of B¥'P, We first use ¥y <1
to be assured of the strong majoration property in 7"3‘)/,p as in Prop, 2).
Then by Prop. 3)1° we obtain the global majoration property for all 7.'57'13.
Obviously, the perfect completion and its exceptional class are independent

of the choice of .

y .
Remark 2. The classes 0[“’2 = a""z = E(Ta’z were studied exten-

sively in [2]. Classes %P for p ¥ 2 were investigated by B. Fuglede [ 9 ].

For a function uel} the Lebesgue set is the set of points x such

loc

that there exists a number uL(‘x) with

lim Tg'(%—r'ﬂ g Ju(y)—ut(x)] ay = o.

r W0 S(x,r)

The complement Ay of the Lebesgue set is the Lebesgue exceptional set

(L-exc. set) of u on which the functions uL(x) -- the Lebesgue function of u--

is not defined (see the corresponding developments in [3]).

With an arbitrary bounded function g vanishing outside of a compact

and satisfying gg dx =1 define
uB(x) = lim Sp‘-ng(ﬂ)‘u(y) dy ,
p 0 p

wherever the limit exists. The points x where the limit does not exist form

the exceptional set of u® -- the corrected function of u by g. The Lebesgue

function uL serves as a ''minimal'' corrected function since every ub is an

extension of uL. uL(x) = u(x) a.e. and the L.exc. set Au has measure 0.

The following fact concerning the Lebesgue function uL' is of impor-

tance to us (see [3]): if u(x) is represented a,e. by the integral
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SGa(x-y)i(y) dy then the integral represents uL(x) at every point x

where the intigral exists and is finite.

72 &, L
Theorem 13.3. i) If u belongs to I.E or 73%P then u™ and every

correction uf belong to p¥P or P respectively, ii) If ueWI’n , m

an integer, uL and every correction ub belong to the almost perfect com-

pletion f,m,l rel. [\ 01“'1 .

a<m
Proof. Part i) follows immediately from the above statement and

the representation of the functions in perfect completion. given in Prop. 3) 3°,

v
Part ii) follows from i) since Pm’lc N Pa’l. For m =1 it is an open
L . a<m 11
problem if actually u™ is in the perfect completion P’  , the L.exc. set
L Y 1,1
being in L7,

Remark 3. The corrected functions and the Lebesgue function were
introduced with the idea of recapturing the ''true'' values of a function which
might be 'incorrectly' defined on a set of measure 0, The above theorem
gshows that there is some factual background in this heuristic idea. The
corrections most often used are by spherical means (g = w, /n for

]xl <1 =0 for ]x] > 1) or by regularizations (g=e).

In preceding section we considered several representation formulas
which represented functions in different imperfect completions ’s‘ by
integrals almost everyhwere., It is important to know if these integrals
give actually a perfect representation of the corresponding functions in the

perfect completion F . This is true in most cases and the key to this re-

_ sult lies in the following theorem.

Theorem 13.4. As in Prop. 3) consider two spaces F = Cta('? 1)

where 7 ‘g LE or 1 at€P 4ng '}1 is LP or B€'P with
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0 <e < 1. Suppose further that an integral transform K from some

measure space {Z,dw(z)} L Ec_)_{Rn, dy} transforms p-ab. regu-
larly Lp(Z, dw(z)) into ’3?1 . 2. Then for any function w(z)e LP(Z,dw(z))

the integral
() {{ a eykizywtadotaey

represents perfectly a function u(x)e F outside of a set of the correspon-

ding class ¢ .

Proof. By Prop. 3) 3° it is enough to show that f(y) = S‘]K(z,y)“w(z)]dw(‘z)

is in 'B"l. When '}1 = LP this follows from p-ab. regularity of K. When

?f = B€'P one has also that ]t]-e A

Ly K] £ 18

ab, -r. too.

t.y;yK(z'Y) is p. -ab. -r. and since

|a K(z,y)|, the kernel ]t]'lAt’y;y]K(Z.Y)] is p. -

Remark 4. As examples of formulas to which our theorem applies
we note the reproducing formulas (5.21) (especially as rearranged in (11.12))
(5.25), (5.27), (5.29), inversion formulas (5.22) (rearranged as in (11.12)),
(5.26), (5.28), the operator (12.4) in the projection Ea,p Ta,p and many

others. However it does not apply to (5.30) or (12.4') since these contain

some singular integral operators.

We pass now to differentiability of functions in our classes. There

1. {'Z,dw(z)} may be {Rm, dz} or {Rm X Rm,dp(x,t)} and so on with
dimension m possibly different from n.

2. This means when “F 1= 5P not only that K is p. -ab. -r. but also
that the kernel ltl'ﬁ'At Y'YK(Z'Y) is also p. -ab. -r, from {Z, dw(z) }.

to {Rann,du(y,t)} .



98.

are three basic questions in this connection.

I) Existence of distribution-derivatives as functions in the right

classes.,

[

We may consider the imperfect completions % ., The right class
for derivatives Dj of functions in ‘X 1is the class of the same type
(L, W or 73 ) with the same exponent p and with order a diminished:

by IJ] units.

(e bR e ot -t

a) Classes W: . These are the best from the present po-iﬁﬁf of view,
Their definition implies that Dj(W:)C W:-bl for all p, 1<'p £ © -and

all j with [j] < a.

b) Classes 73%P, Practically as good as the preceding. We take

the reproducing formula (11.2) (with @ = ) and apply Dj formally (which

- has a meaning inthe sense of distributions). We proceed as in the proof of

Theorem 11,3 (only the kernel Ga--y is now replaced by Dj GZa) and as be-
fore obtain the ab. -regularity of all relevant transformations for ]J] < a.
Hence D, TAHPC B a-lilp for ap p and ]j] < a. With our definition
of fbo’p (see §11) the inclusion is true even for ]J] = a but 7~30,p

is a functional space only for p £ 2 and fbr p > 2 it contains distribu-

tions that are not functions.

c) Classes Lz . Everything is right for 1 < p < . For ue LF;
we use the representation Dju(x) = S‘Ga_m (X'Y)‘YDJGBI (y-z)f(z) dzdy for

fe LP, The inner integral is a singular integral (see (5.7) and (6.13)). Hence
p P il = > =
Dj(La)C La_hl for 1 < p < oo, ]J] g a. But when p =1, or p = o, the

inclusion is never valid. We have still obviously D.(Lg)C N ‘ Lg =
J B«z-]jl
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N WB for ]_]] < a, For ‘_]I = a, Dj(Ll‘ ) contains distributions

Bea-ljj P 4
hich t functions, whereas D(LiHC 1 Ll .
which are not functions, whereas J( bI)C lgg<o loc

II) Representation of derivatives by differentiation under integral

sign, Perfect representation,
g P

If the function u is represented by one of our integral transforms,
which, by our theorems, puts it in one of the classes L, W, 73, of order «
at most, then we cannot apply Dj to the kernel for ]J] > a and obtain still

/ =

a non-singular integral transform. (Sometimes, when ]J] = a wegeta

singular integral transform of the type (5.7).) Therefore we will assume

]jl < a. Our consideratinns are valid also for ]J] = 0.
Ml < p < oo, The only relevant classes are Ls and %a,p.

The transform can always be written in the form (**) of Theorem 13.4 (with «
replaced by a - € in case of (53 a,p)- Replacing in (%) Ga(x-y) by DjGa(x-y)
(or D.G

i a-€
c[Ga(x-y)+Ga_lj](x-y)], we obtain by the same proof as in Theorem 13.4

in case of 7;5“"9) and remembering that by (9.1), l‘DjGa(x-y)] <

that the representation of Dju, as function in Pa-bl‘ (or Ba—]Jl’p) is perfect.

The case p=1l. If ue 'Téa'l the results are exactly the Bsame as in

the preceding case.

If ue Wla , @ an integer, we do not know if the representation is of

the kind treated in Theorem 13.4. However, we know that Dju € Wla'b] and

the representation is almost perfect, i.e. valid outside of a set in N aB'l,

B<a-lj|
If ue L:x we know that in general Dju ¢ L‘I‘"bl' However, if the repre-

sentation is of the type of Theorem 13.4 (e.g. u = Gaf' fe Ll), we get, in
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view of inequality (9.]) that Dju is defined by the integral outside of a

set € Uﬁa'ljl ’1.

The case p = oco. In this case all functions in our classes and all
their derivatives of order <a are continuous and bounded.

The derivatives are represented by the corresponding integrals everywhere,

III) Pointwise differentiation. We will introduce a notion of poihtwise

derivativé, somewhat more restrictive than usual. We will say that u de-
fined outside of some exceptional set A has a pointwise derivative in some
direction, say the direction of x = axis, at the point y if in some interval

Y, < xn< Yo +a, a > 0, u(y’,xn) is defined and absolutely continuous

1
loc

and Dxu(y) = lim %Ah' u(y',yn) exists and is finite, If uel and
n h+0 "Yn

the so defined D exists a.e. and D ue I.,l then D u is the distribution
Xn xn loc X,

" derivative of u.

By repeating the operation we obtain any higher order pointwise deri-
vative D.u. It is clear that it is necessary to define u much more precise-
ly than exc. 010 to have the derivatives Dju exist in pointwise sense.

We will consider the perfect completions Pa,p,‘ 'P’,a,p. and B?P ‘and
prove that for u in any one of them the pointwise derivatives D.u exist for
]jl‘ < a outside of a set of the corresponding class a"'bJ'P. aa-b’].p or
;G_a'-b].p and belong to pa-lj].p. E,a-lj] P and Ba-ljl.p respectively. The

only exceptions will be p =1 for all classes and p = oo for p¥®,

We prove first a few inclusions

a-a'

n

>

[} '
> .15 - , PUPCPpYq, q¥PC %9,

|-

(13.6) For 0<a'< a and -16

In fact, by Young's inequality (see [2], §10, Prop. 1)) we have G, o f€ Le
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1

if fe LP, hence Gt =G, * (Ga_a,f)e P%'2,  The inclusion between excep-
tional classes follows from the one between the spaces,
{13.7) For p <gq, A%PDOou%e .

It is enough to prove this for bounded sets. Suppose A(C S(0,R) and
Ae 1% 9 1t follows from Prop.3)2°for the isomorphism Ga: L Lg , that
AC[x:Gaf(x-) = w] for some feLY, f > 0. Let x(x) be the characteristic
function of S(0,R). Put f1 = x{, f2 = (1-yx)f. Then GafZ is a regular analytic
function in S(0,R), and hence A (C [x: Gafl(x)‘ = ). Since fle LP 3.7

follows.

Lemma. 1°. Let Ae 0{*'P (or Aeéa’p), a > 1. The set of straight

lines parallel to the x -axis and meeting A forms a set ¢ A% 1P (or e l'P),

v
2°. Let Aec OLI’p. The set of straight lines parallel to the xn-axis and

meeting A forms a set of Lebesgue measure 0.

Proof. 1°. By proposition 3) 2° there exists a function @ 2 0 such

that A = [x: Gacp(x) = ] with cpeLp or A = [x:Ga_fq) (x) = o] with

~ ' N
€ = min[gi—l, -lz] and o¢e?3'P.  Pput Pqlx'ix ) =S‘ p(x',x +7)dT for

a positive integer N. We have
‘ < 2N . A < ZNjAa .

Il , <axlol , - 1ol , < 2vlal

Therefore P € LP or P € ';:;)6 P respectively. Put A(IN)= [x:Gaq)l(x) = oo]
N N

and AgN)= [x: Ga_lcpl(x) =] (or A(1 ) = [x:Ga_Ecpl(x) = o] and A(Z) =
[x:Ga’_€ _lcpl(x) = o] ). Then A(IN)E #%P and A(;I)G ma-l,p (or H*P
and ",Ga-l,p respectively). Consider a point quuA(lN) v A(—?). By (9.1) we

have ]-é?x—Ga(x-y)] < clG (x-y) + Ga_l(x-y)] hence for any h, |h} < N,
n
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h

|G oty' .y, +h)- G oly'.y, )| §S‘n5‘ l-g)-‘: G (y'-x',y -x_+7)| o(x',x )drdx
R" 0

h h
s C[S‘ Ga(y'-xuy,;-xn)g P(x',x +T)dTdx +§ Ga_l(y-X)g CP(X'.xn+'r)d'rdx:|
R 0 R 0

p-3 C[G&CPI(Y) + Ga-lq’l(Y)] < o
{or similarly IGQ_GCP (y .yn-i-h)— Ga- ¢ cp(y)l < C[G‘r_€ q)l(y) +Ga;e _lcpl(y)] o).

U (AN A(N) -1
It follows that for y outside of the set A U U (A] 'UAY, e o*™'P
1

{or x_’a—l,p) the whole straight line parallel to xn-axis and passing through

y lies outside of A.

2°. By Prop. 2) there exists an increasing sequence of continuous
positive functions W forming a Cauchy sequence in W; such that A(C
[x: uk(x)/ w®]. Since the u, are continuous we can find a set A of measure

0 formed by straight lines parallel to xn-axis such that
h
8 ‘ .
uk(x',xn-l-h) - uk(x) =S‘ Wx; uk(x‘,xn-l- T7)dT for all k, h and x outside of Al'
0

If there was a set of positive measure of straight lines parallel to
xn-axis and meeting A there would be also a set of positive measure of

©
such lines on which S‘ }'bax_ (x\x + 'r)]p dr < MP for some constant M
0 'n

and all k (since -;-:—‘— u is a Cauchy sequence in Lp). Also in this last
set there would havento be a point y where Iuk(y)l < N for all k., On the
corresponding line we would have ]uk(y',yn+h)| <N+ Mlhll/p and the
line would not meet A,

Theorem 13.5. 1 . The case 1 <p <o. If ue p*P (or Ba.p) and
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lif < @ the pointwise derivative D.u exists exc. ()la_ljl'p (_o_roéa—m'p)and be -

longs to Pa-ljl,p (or Ba_bl’p);_if bl = a, Dju exists exc.®, and eLP for

v

A4
we PYP = PP, 2° The case p=1. If ueP¥,, P®L or B®), and [j| <o,

Dju exists exc. () 01-B’1 and belongs to N PB’l; if lil| =a=1
oy Pl Bea-lil
and ue P77, Dju exists exc.(0t, and belongs to Ll. 3°. The case p =oo.

v y,00

If u belongs to P¥® P ) ngBa’oo and |j| <o, D, exists everywhere

and belongs to Ba-|j|,oo’ lga-[jl,oo, EB""“""," respectively; if il = a and

Lo, 00 e A . fo'e)
ue P , then Dju exists exc.ULo and belongs to L™,

M' 1°. Clearly it is enough to considér the case ]J] =1, Suppose
first 1 < . We confine ourselves to the case u€ B®'P (the case ue PP
is slightly simpler, both are similar to the case p =2 treated in [2)).
Since u(x) :Ga-ef(x) exc, 6X'P with 2¢ =min(e-1,1) and fe W; we can
take the set Aeiya—l’p of straight lines parallel to xn-axis such that

u({x) = Gaf(x) outside of A as in the above Lemma, then we write

h
%(u(x’,xn+h)‘—u(x‘.xn)) = g g %-nga(x'-y',xn-yn)f(y',yn-i"r)d'rdy .
R 0 n

The integrand is majorated by

1 1 ) ' 1
c H[Ga(x -yhx -y )+ Goz—l(x —y'.xn—yn)‘]f(y SRR

Introducing h
Ty, y,) = swp g | [y #rlar
we check immediately that h0
I‘At-f-(y,yn)l < sup%{ g ]‘Atf(y’,yn+'r)] dt .
0

Applying Hardy- Littlewood inequality we get ‘e WpE , hence outside

103,
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the set where Cva_ez(x) + Ga-e-lax) =0 and set A -- which form a set
in i’a-l,p -- -g)qu(x) exists and is given by ('g)—:;Ga) * f whichis a

perfect representation of a function in Ba-l.p.

. . o
If a =1, we use a sequence of continuous functiens P € C0 conver-

.o Ylp X lp . ] p
ging in P to uexc. #17'Y, For almost all lines B P converges in L¥-
- n

norm. If we assume that E]-cpk— (pk-i-lll b < o the convergence is domina.-

9 9 ) P
ted by 213?; cpk(x) - -aTn cpk“(x)] + a—xn cpl(x) €L", hence almost everywhere

lim Hulx'x +h) - ufxix ) = Jim Lim Hoy (x\x_+h) - @ (x\x_)) which
= =00 h=0

finishes this part of the proof.
2°, We use the preceding part and the inclusions (13.6) and (13.7) to

show that Dju for |j| < a exists exc. M 0tBl .nd is represented by any
B e-lj
of the relevant representation formulas differentiated under the sign of in-

tegral; but such a differentiated formula in all cases represents a function

in N PB’I. For |jl =a=1and ue Bl the proof is as in case 1°,
B a-il
3°. This is obvious except when li| = and ue PP when we proceed

. o
asinl.

§14. Restrictions and extensions of functions of P*'P  B¥'P

We shall apply here the results of 310 and 8§13 to characterize the
restrictions of functions of B¥P and P¥P to hyperplanes and extensions
of functions of B*P from hyperplanes to the whole space. Results pre-
sented here were obtained in a somehow less precise form by Besov
[5] (for B¥'P) and Stein [18] (for P®’P). The corresponding results for
1‘5a,p can be obtained from the ones described here, in view of its inclusion

relations with B*'P and P*P (§13),

We begin with the characterization of restrictions of functions of B®'P,
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1.
By Theorem 13.2, if ue BYP and v is a fixed number, 0 < 4 < min(l,a),
then u = S‘Ga_‘y(x-y)f(y) dy exc. HYP with £ eBHV'P (= WI;Y) and the norms
lfl and ]ul (k > @) are equivalent, For almost all z we have
7P a,p.k
At; Gzy(z-y)

gt

f(z) =G, _* f(2) + g §

n

w(y.t) duv(v,t)
R »

where w(y,t) = ]t]"YAtf(y) , and consequently,

A G L (x-y)
(14.1)  u(x) =§ G,y (x-y) £ly) dy + g g EYORY iyt du (y.t)
Rn ary r® Rn jt] Y

the latter formula being valid in view of Theorem 13.4 exc, &PP. Formula
14,1 is suitable for defining restrictions of u to hyperplanes. As before,

for n'-integer, 0 < n' < n, x' will denote the projection of the point x onto

the hyperplane Xoipp S =X, 0= 0, n"=n-n'. Assume that o« > %—l )
i
1 £ p £ o and define the restriction of u to R,
‘ At'Y‘Ga+7(x'Y) '
(14.2) u'(x") =§ Ga+7(""y) f(y)dy + S 5 “— W(y,t)‘duy(y.t) '
r® rR" ‘R? ]t] ‘

with f and w as in formula (14.1).

Hence u' is the sum of results of integral transformations of Props.
10.1 and 10.2 applied to feLp(Rn) and wsL‘p[Rann, dpy(y,t)] respectively.
By Props. 10.1, 10,2 i), and Remark 2 of §10, we conclude that u' is defined
a.e, on Rn' » belongs to Lp(Rn') and lul < clf‘l with a constant
Lp(Rn) = 7P

c independent of f. Similarly, the difference quotient w'(t'l,x’) =
nll

i SN '
]t'llp Al:, u'(x'), kK>a - -nF' , is the sum of results of the transforma-
1

tions of Props. 10.2 and 10.4 applied to f and w respectively, and by

1. We could put 4 = -lzmin(l,a).
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Props. 10.2 i), 10.4, and Remark 2 of §10, it belongs to LP(R" xR du{x't!)]

and ]w'] b c]f]_y p with some constant independent of f. We con-

- clude that u'e ,ﬁa-n"/p,p and

(14.3) Ju'] < clu
a-n'/p,p,k' a,p.k

with k > o and some constant c independent of u.

It remains to prove that u'e B“‘n'VP'P(R“')_ In fact, u(x) is a pointwise
limit outside of Ae %P of a Cauchy sequence of continuous functions
ukE?‘\')a’p(‘Rn). Hence their restrictions u) form by (14.3) a Cauchy sequence
of continuous functions in éa—n'}’p,p(Rn') éonverging‘ pointwise to u' outside
of AN Rn'., We must now prove that A Rn'ez.a-n“/p,p(Rn')' By Prop. 3),2°
there exists obviously a Cauchy sequence of continuous functions vy € 7:5 a,p(Rn)
such that A([x:lim vy (x)= ®]. Their restrictions form a Cauchy sequence
of continuous functions v'ke %a-n'yp,p(Rn') and on A1) Rn,' v'k(x') - o,

hence AV R e (Ta-n"/p,p(Rn'). We have proved thus

"

Theorem 14.1. _I_f ue Ba.P(R"), a > -I;— y 1 5_ p < @, then the pointwise

' -n'! '
restriction up of u to R® belongs to BY n/p,p(Rn) and the restriction

mapping is linear and bounded.

We shall prove now that this restriction mapping is a mapping onto.

Let u'(x )eBﬁ'P(Rn ). Similarly as in (14.1) we can write with some
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1. \
¥, 0 <4 <min(l,3) and an f'ewg(R" ) (with the norms ]u‘]‘B .k and

| 111 :
| l'y,p equivalent),

Oy )
ltl Y

(14.4) w'(x') = “) * {(x") +§ S w'(y',t')dp_(y't)
Ay Y
exc.séﬁ’p(in R")
where w'(y',t') = lt"l"YAt,f'(y") . Observe, that by the definition of the

!}
kernel G(in) we have

(a+n )
(14.5) 6" =a™)(|x)) = (4m) v2 - — I G ]
T
= cnua a+nndx“ »

where Ga-l-n' denotes the usual n-dimensional kernel,

Define now the extension u of the function u' by the formula

(14.6) u(x) = n gey [S‘n' Gyigpeyix-y £ (y") dy'
R
A, .G (x-y')
t'; n +B+'}’ ! ¢1 ' ' ]
«f llt'l’ Wiyt )d yhe) |

' 1
Clearly u is a C™ function outside the hyperplane R* and u(x') =
u'(x') exc. GG'B'p {in Rn').

(X3
Let o« =8+ P—p—- and k be an integer, k > a. Applying Props. 10.1
adjoint, 10.2 i) adjoint, and Remark 2 of §10, we verify that ue LP(K") and

ﬂullLP = C]u'lB,p,k' (k'> B), with some constant c independent of u'.

Similarly, by Prop. 10,3 and 10.4 adjoint, the difference quotient
ltl-a A u(x) = wix,t) is in LP[R*xR,dp(x,t)] and hwl < clu| ,
t . . LP(d ) = B:P.k

with ¢ independent of u'. Since (14.6) is of type (**) of Theor, 13.4, this proves

1. We could put y = %min(l,B).
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Theorem 14.2. If v’ GBB'p(Rn), B>0, 1<p oo, then u' can be

canonically extended by (K4.6)to a function ue BB+n'Vp,p(Rn). the extension

mapping being linear and bounded.

We state now the following theorem concerning spaces PP,

"
Theorem 14,3. i) If ue Pa.p. @ >% » 1 <p Lo, then the restriction

' T !
u' of u to R belongs to B*™" /p.p(Rn ), the restriction mapping being

linear and bounded.

]
ii) _{f_u'eBB'p(Rn ), B>0, 1<p<oo, then u' can be

1,
extended to a function ue PB+n‘ /p.p' the extension mapping being linear and

bounded.

Proof. Let ue P"P(R"), then by Theorem 13,2, u(x) = S Ga(x-y)f(y)dy
n
exc. 4%P, feLP, R

Define
u'(x) = S Ga(x'-y)f(y) dy .
— Rn
. t 1
By Prop. 10.1, u' is defined a.e. on R', belongs to LP(K') and ]]u']l p <
: L

cl]f]l p with a constant ¢ independent of f. On the other hand, by Prop.
' L

. [}
10.2 ii) for k'> a- %1 the difference quotient

2 e, &G (x'-y)
"(x',t') = |t P Ak, "(x') = t a (ly) d
w'(x ll tu(x 'RnW‘y y
belongs to Lp[fe"x Rn',dp,' (x',t')] and "w' "Lp(du') < cﬂ‘fuLp with some

, - \
constant ¢ independent of f, This proves that u'e na-n'yp.p(nn) To

show that u' is actually in Ba-n"/p,p(Rn’) we proceed as in the last part of‘
Theorem 14.1.

i) Let u'eBB'P‘(Rn') and let u be given by (14.6). Then uéc’B-l-n'fo

with
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f(x) = cf\"-B""Y [ ‘ o G‘y“l'l’l"/ (x-y') f'(y’ ) dy'
R

Rn Rn ]t l"Y

and by Prop. 10.1 adjoint, 10.2 ii) adjoint, and Remark 2 of §10, feLP and
£} b S c]f']y b In view of the definition of f' (as in (14.6)) this completes
L ) »

the proof,

v
We mention finally the case of the spaces Pm’1 m-integer, about

which no information can be obtained from the theorems proved above, E.

Gagliardo proved (c.f. [11]) that restrictions of functions of P l(Rn) to R*7

are in L(‘Rn— ). His reasoning can be extended (by completion of Coo) to

prove that restrictions of functions of Pm l(Rn) to R are in Pm -n", 1(Rn ),

m-n" > 0, PO’1 = Ll .
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